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EXECUTIVE SUMMARY 

This study aimed to construct a tool for Tasman District Council (TDC) to estimate real-time 
faecal indicator bacteria (FIB; enterococci) concentrations at a popular recreational beach 
(Kaiteriteri). This work was requested in response to a 2011 beach FIB closure over a 
popular Christmas period. Modelling tools were developed by considering potential drivers of 
FIB in the region, and tested to assess their potential use as decision tools following the 
approach undertaken by other international studies.  
 
Customised FIB models for beaches at and around Kaiteriteri are based on candidate 
environmental data (northerly and southerly wind strength, Motueka River flow and solar 
radiation) and estimates of faecal indicator bacteria (FIB; E. coli) loading derived from a 
mechanistic faecal bacteria loading model developed for the Motueka River (Wilkinson, 
2008).  
 
Six candidate general logistic models were constructed to estimate the probability of 
detection FIB at the sites using the available explanatory and response data. The models 
were stratified by the direction of the northerly component of the wind and considered lags in 
the explanatory variables. The variance explained by all of the models was low (<2%) for 
estimating non-detection/detection of FIB at the sites. Although the variance explained by the 
models was low for the artificially for non-detection/detection of FIB, the model’s performance 
were also tested at higher threshold exceedances to see if this could contribute additional 
information to improve decision making.  
 
However, the diagnostic performance of the models for predicting the Ministry for the 
Environment (MfE 2003) bacterial guideline standards imply that the models were not able to 
substantially improve decision making; therefore we would not recommend the use of the 
models in an operational setting.  
 
Factors that potentially contributed to poor model performance and possible solutions for 
improving forecasts of water quality conditions at Kaiteriteri Beach include the following: 
 

1. Data limitations: The bathing water quality dataset used to build the model was 
limited to FIB data collected only during summer months and did not include many 
periods (and corresponding weather conditions and river flows) when FIB would 
have been elevated. Collection of more data during wet weather periods may 
provide better data for building robust models in future. 

2. Exclusion of local drivers: Additional factors such as local conditions (wave action, 
tides), local inputs (e.g. from bathers, fauna and local streams) and resuspension 
of persistent bacteria in beach sands may be contributing to episodic events; 
inclusion of these factors in the model may improve forecasts. Microbial source 
tracking (MST) tools would also assist in discriminating between contamination 
driven primarily by fresh sources versus those that are associated with persistent 
FIB. 
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3. Model flexibility: The model techniques used, although successful in other 
systems, may not have allowed for non-linear interactions. Revisiting our existing 
dataset with different modelling techniques could produce more successful models 
in future. 

 
These issues indicate that a mechanistic approach to forecasting contamination at the site 
could be more successful.  
 
The stated objective of producing a robust FIB decision tools for Kaiteriteri Beach was not 
met, but the study provides a useful methodology which could be developed for other areas. 
Although not part of the original objectives, we show that a Motueka River FIB model 
(Wilkinson, 2008) can be used to successfully predict MfE guideline standards in the river. 
Although the river model alone was not able to provide a level of confidence that would 
enable its use in an operational sense, it was particularly useful when combined with the 
logistic modelling techniques presented in this study and its performance is classified as 
‘excellent’. We suggest this Motueka River FIB model may be of assistance to the Tasman 
District Council (TDC) in implementing near real time estimates (and possibly forecasts in 
future) of riverine FIB quality for internal and public users of the river and mudflat areas 
around the river in future. 
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1. INTRODUCTION 

Kaiteriteri Beach is a very popular bathing beach in the summer periods and is located 
to the north of the Motueka River. The beach is within the influence of the Motueka 
River plume (Figure 1, Gillespie et al. 2011) and the catchment surrounding the river 
has farming activities which contribute to observed bacterial concentrations in the river 
(Wilkinson et al. 2011) and Tasman Bay (Cornelisen et al. 2011). 
 
 

 
 

Figure 1. Study area, showing proximity of Kaiteriteri Beach to the Motueka and surrounding rivers 
and sampling sites at Woodstock and Woodmans Bend. 

 
 
Regular water sample tests are carried out over the summer bathing season by 
Tasman District Council (TDC) to ensure that people using Kaiteriteri Beach for 
contact recreation are not exposed to significant health risks from poor water quality. 
Water samples are assessed against the Ministry for the Environment (MfE) and 
Ministry of Health (MoH) Microbial Water Quality Guidelines (MfE 2003; hereafter 
referred to as the ‘MfE Marine Guidelines’). The MfE Marine Guidelines use 
enterococci bacteria as a faecal indicator bacteria (FIB) to detect the potential 
presence of harmful pathogens in marine waters and provide a framework for 
addressing appropriate management response (Table 1).  
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Table 1. Guideline levels and management response for marine water samples (MfE 2003). 
 
Mode 
  

Guideline 
(Enterococci count in colony-
forming units (cfu) per 100 
mL) 

Management response 

Green /Surveillance Single sample ≤ 140 
 

Routine monitoring 

Amber/Alert Single sample > 140  
  
 

Increased monitoring, 
investigation of source and risk 
assessment 

Red/Action Two consecutive samples within 
24 hours  > 280 

Closure, public warnings, 
increased monitoring and 
investigation of source 

 
 
Detectable concentrations of enterococci are common at Kaiteriteri Beach after rain 
events in summer, which suggests a link between riverine flows and beach FIB 
concentrations. However, the incidences of FIB levels exceeding the amber alert 
mode of the MfE Marine Guidelines are rare. 
 
A recent beach closure due to an enterococci concentration exceedance event that 
occurred at Kaiteriteri Beach over the 2010 Christmas period led to a community 
demand for quicker decision making by TDC. Presently, laboratory testing of FIB 
(Enterococci) concentrations at the site introduces long delays (>24 hours) between 
sampling and the availability of results. This study aims to provide information that 
could aid quicker decisions whilst attempting to improve an understanding of 
environmental and catchment drivers of FIB concentrations in the region. 
This study builds from existing knowledge obtained through 10 years of research in 
the Motueka catchment and river as part of the FRST funded integrated catchment 
management (ICM) programme. The study also leverages information from other 
State of the Environment (SoE) data collected by TDC around Kaiteriteri Beach from 
1996 to present.  
 
The following steps were proposed: 
 

1. Review previously published modelling methods that could potentially be applied 
for predicting faecal contamination at Kaiteriteri beaches. . 

2. Generate statistical regression models of riverine bacterial concentrations, based 
on knowledge of the processes affecting die-off and transport of FIB in the region 
for key recreational beaches where data is available.  

3. Test the performance of the models ability to predict available FIB measurements 
at the sites and aid in the FIB decision process. 

4. Develop an operational tool that may be automated in future by TDC to provide 
near real time estimates of FIO concentrations at coastal sites. 

5. Enable any constructed model to be integrated with the Hilltop software package 
by the subcontractor (to be completed after publication of this report). 



CAWTHRON INSTITUTE  |  REPORT NO. 2122 MAY 2012 
 
 

 
  3

1.1. Background to faecal indicator bacteria drivers and die-off in the 
coastal environment  

FIB concentrations are often highly correlated to rainfall and increased inputs of 
diffuse sources of faecal contamination (from farming) during and following rain 
events (e.g. Wilkinson et al. 2011; Cornelisen et al. 2011a). Commonly measured FIB 
such as E. coli and enterococci are known to persist in a terrestrial environment once 
released by the host (Ishi & Sadowsky 2008). These bacteria can survive for periods 
of days to weeks in river bed sediments, which can then be released in large pulses of 
contamination to coastal environments during flood events (Wilkinson et al. 2011). 
Hence, river flooding and antecedent rainfall patterns therefore play a major role in 
driving FIB concentrations observed near the coast.  
 
With the exception of birds, the dominant sources of faecal contamination contributing 
to coastal waters are primarily associated with diffuse non-point source pollution and 
potentially point source pollution (sewage outfalls). Spatial gradients in FIB 
concentrations are likely to exist within coastal environments, with higher 
concentrations in proximity to incoming sources and lower concentrations observed 
with distance and dilution with marine waters.  
 
In addition to river bed sediments, estuary sediments and beach sands can also act 
as reservoirs for FIB that can be released into the water column just following high 
tides (e.g. G. Lewis presentation at WaterMicro2011 on Bethells Beach; Boehm and 
Weisburg 2005; Yamahara et al. 2007). Hence, tidal movements can influence the 
extent of dilution of FIB populations in nearshore waters; this is particularly pertinent in 
shallow estuaries where strong currents can suspend fine sediments and associated 
bacterial populations (e.g. Sanders et al. 2005). Wave action can also enhance the 
resuspension of sediments and beach sands, and thereby also has the potential to 
release persistent populations of FIB to the marine environment (Yamahara et al. 
2007).  
 
FIB populations are also subject to a number of mortality pressures. Compared to 
fresh water, a faster die-off of E. coli and enterococci is observed when exposed to 
brackish and saline water. Temperature is also known to affect the viability of FIB, but 
the major driver of faecal bacteria mortality is exposure to UV radiation.  
 
FIB concentrations in clear waters exposed to sunlight, typically decline to less than 
90% of original concentrations over the course of the day (Rosenfield et al. 2006). As 
a result, the time of day, combined with water clarity characteristics, antecedent 
rainfall patterns and proximity to incoming freshwater sources, may all have large 
influences on variability in FIB concentrations. As a consequence of all of these 
processes and effects on the survival of FIB in the coastal environment, it can be 
difficult to find simple explanatory variables of FIB concentrations at coastal sites. 
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1.2. Review of approaches to quantifying drivers of FIB concentrations 

Authorities around the world are under pressure to make quicker decisions about 
whether bathing water areas remain open or closed. Masopust (2005) notes that the 
delayed bacterial results generally have a poor correlation with the period they are 
meant to represent (e.g. Boehm et al. 2002; Whitman & Nevers 2004), and therefore 
beach closures made on the basis of ‘yesterdays’ data may not be reliable. 
Consequently there exist strong incentives to improve the predictability of short-term 
variability.  
 
Whilst investigating solutions to address these issues, two possible approaches are 
evident in the literature: 
 

1. The use of molecular or PCR tools to reduce the long incubation periods required 
under traditional approaches (e.g. Noble & Weiseberg 2005) 

2. The use of models based on existing data to statistically model the likely FIB 
concentrations at a site (e.g. Diane & Ahlfield 2007; Eleria & Vogel 2005), or 
alternatively the use of an theoretical understanding of the system to 
mechanistically model FIB transport and survival (Wilkinson et al. 2011; Steets & 
Holden 2003). 

 
In this study we were focused on a statistically based modelling approach.  
 
A review of similar attempts to derive statistical predictive models from environmental 
forcing suggests this approach had a reasonable chance of successfully predicting 
FIB concentrations (e.g. Eleria & Vogel 2005; Olyphant & Whitman 2004; Maimone et 
al. 2007).  
 
Our review also highlighted a number of statistical modelling methods that could be 
used in studies available from the literature; of note were two main approaches: 
 

1. Machine learning or artificial intelligent methods, which includes the use of 
techniques, such as: 

a. artificial neural networks (Diane & Ahlfield 2007) 

b. genetic algorithms (Tufail et al. 2008). 

2. Regression modelling methods (e.g. Eleria & Vogel 2005, Olyphant & Whitman 
2004; Christensen et al. 2001; Diane & Ahlfield 2007). 

 
Tufail et al. (2008) note that if logarithm transformed data are used that the 
performance of both machine learning and regression approaches are comparable 
and that both techniques are potentially suitable for estimating FIB water quality. 
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2. METHODS 

2.1. Analysis approach  

Given the primary objective of aiming to produce reliable models for the region, but 
also improving an understanding of FIB explanatory variables in the region, this study 
adopted the multiple linear regression modelling approach employed by Eleria & 
Vogel (2007).  
 
The multiple linear regression modelling approach attempts to use a number of 
explanatory variables to improve the performance of the model at predicting observed 
bacterial concentrations at and around Kaiteriteri Beach. The model takes the form of: 
 

Y = β0 +β1X1 + β2X2 + β3X3 …. + E       (1) 
 
Where, βi are loadings on each explanatory variable (Xi) determined by linear 
regression, Y is a response variable (i.e. bacterial concentrations at the beach) and 
the Xi are the appropriate environmental explanatory variables (Table 2). E is an error 
term which accounts for the unexplained fraction of the model.  
 
 

Table 2. Response and candidate explanatory variables used in the development of the model, 
the short names used in our models and the data source. 

 
Variable name Short name Description Source 
Kaiteriteri Beach 
Enterococci counts 

bacti Response variable TDC 

Motueka River E. coli 
model estimates 

bactiModel Candidate explanatory 
variable 

Appendix 1; 
Wilkinson 
(2008) 

Motueka River flow 
Woodman’s Bend 

Flow Candidate explanatory 
variable (m3/s) 

TDC 

Solar radiation (W/m2, 
Riwaka) 

Light Candidate explanatory 
variable 

NIWA CliFlo 

North/South wind (m/s, 
going to) 

U Candidate explanatory 
variable – 6 hour smoothed 
North/South wind (m/s) 

NIWA CliFlo 

East/West wind (m/s, 
going to) 

V Candidate explanatory 
variable – 6 hour smoothed 
East/West wind (m/s) 

NIWA CliFlo 

 
 

2.2. Descriptions of explanatory and response data 

2.2.1. Response data 

FIB data obtained through state of the environment monitoring by TDC at and around 
Kaiteriteri Beach was used to investigate relationships between candidate 
environmental explanatory variables. Data from six sites were used in the construction 
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of the model, providing 351 samples from 1 January 2001 (Table 3). Sites were 
aggregated to increase the amount of data available for model construction due to the 
close geographical proximity of the sites and a lack of E. coli significant differences 
observed in the distributions between the sites (Figure 2).  
 
 

Table 3. Sample sizes of enterococci data used in model construction. 
 

Site name Sample size 
BW Breaker Bay 33 
BW Kaiteriteri (North) 15 
BW Kaiteriteri (South) 15 
BW Kaiteriteri Beach 198 
BW Little Kaiteriteri Beach 81 
BW Stephens Bay 9 

Total 351 

 
 

 
 
Figure 2. Log-transformed data from each of the sites show a high number of zero counts and no 

significant differences. Note that the edges of the boxes represent the upper and lower 
quartiles, whilst the dark line in the boxes represents the median value. The dashed lines 
represent the lesser of the maximum or 1.5 times the interquartile range, with outlying 
data points marked with an ‘o’. 
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2.2.2. Explanatory data 

Data used to build the models were composed of existing validated mechanistic river 
model estimates of E. coli (Wilkinson et al. 2011) and environmental forcing data 
supplied by TDC (River flow) and the NIWA Cliflo database (wind, radiation, 
temperature data) (Table 2).  
 
 
Motueka River E. coli Model  
A single point riverine E. coli model was developed in the ICM programme (Wilkinson 
2008) and is also based on TDC (River flow) and meteorological NIWA Cliflo (NIWA, 
2011) data from the region. This model successfully reproduced the timing, magnitude 
and variability of E. coli concentrations near the river mouth (Figure 3). As E. coli and 
enterococci concentrations are often correlated in riverine water (MfE 2003)1, the 
model data was investigated as a possible explanatory variable of the Kaiteriteri 
beach enterococci concentrations in this project. The model performance was good 
and it was deemed suitable for inclusion as a candidate explanatory variable (model 
performance detailed in Appendix 1).  
 
A 10 year dataset of predicted E. coli concentrations was constructed for this project 
and will be supplied with this report along with the model code (Appendix 2). It is 
envisaged these data and the model may find use in other council activities, possibly 
as a predictive tool to provide information to the public on possible bacterial 
contamination in the river in the absence of monitoring data. The single point model 
used here (Wilkinson 2008) has also since been updated to include multiple 
catchments (Wilkinson et al. 2011) and appears to offer improved performance but 
has not been applied to this study.  
 
 

                                                 
1 Enterococci generally have a longer survival in seawater than E.Coli, hence its use is recommended as a 
marine FIO. 
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Figure 3.  Comparison of modelled to measured riverine E. coli concentrations over the April 2009 

Motueka flood event.  
 
 

2.3. Data exploration 

Prior to the development of the model, a data exploration protocol described by Zuur 
et al. (2010) was undertaken to assess the following issues and where necessary, 
transform the data: 
 

 Outliers in the response and explanatory variables 

 Zero biased data 

 Collinearity. 

 
The unmodified beach bacterial data (bacti) from Kaiteriteri Beach and surrounding 
sites and candidate explanatory environmental variables are displayed in Figure 4. 
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Figure 4.  Comparison of response (bacti) and explanatory variables, showing data distributions, 

and Pearson’s r for all variables. Abbreviations for variable names are provided in Table 
2. 

 
 
The initial analysis of the histograms in Figure 4 showed some outliers in the 
candidate explanatory variables dataset (i.e. bactiModel, Flow and v). In order to 
minimise the influence of outlier data on the beach model development, these were 
log transformed (i.e. log10(X+1); Figure 5). It is recognised that although the 
underlying distributions of explanatory variables were not normally distributed, that the 
linear modelling approach is reasonably robust against violations of these 
assumptions (Fitzmaurice et al. 2004 as referenced by Zuur et al. 2010). 
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Figure 5. Comparison of log transformed response (bacti) and explanatory variables (bactiModel, 

light, and flow), showing data distributions, and Pearson’s r for all variables.  
 
 
The input data was also smoothed using a six hour moving average window to 
remove high frequency artefacts which could complicate the modelling process.  
 
Southerly winds (v>0) have been observed to drive the Motueka plume northwards 
towards Kaiteriteri Beach and northerly wind events (v<0) away. Hence two separate 
north and south wind models based on a split in the smoothed northerly component of 
the wind field (v) were investigated.  
 
 

2.3.1. Accounting for colinearity 

The data exploration of the transformed data and lagged data (see Section 2.5 for a 
discussion of lags) also showed the potential for collinear explanatory variables to 
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cause issues in the construction of the model (Figure 5). In order to ensure that 
collinear explanatory variables were not included in the model construction, variables 
with the highest variance inflation factor (VIF) were sequentially excluded from the 
model, until VIF values were all below two (see e.g. Fox 1997, as cited by Blanchard 
et al. 2005).  
 
Due to the use of flow data (flow) in the Motueka River E. coli Model (bactiModel) (i.e. 
a possible confounding variable) and their high correlation (e.g. Figure 5, Pearson’s 
r=0.73), the variable with the higher VIF value was removed from each of the models, 
even if the VIF value was less than two. Table 4 shows the results of this analysis for 
each of the six models investigated (three lagged and three unlagged models), with 
the excluded explanatory variables highlighted in the table. 
 
 

Table 4. Results of final VIF analysis for each of the six different models. Explanatory variables 
VIF values indicated in bold were removed prior to initiating the model selection process 
due to issues with colinearity. 

 
Explanatory 
variable/model 

Lagged log(bactiModel + 1) log(flow + 1) log(light + 1) u  log(v + 1)1 

Southerly wind Y 1.01 2.27 1.03  1.29 1.31 

Northerly wind Y 2.09 1.04 1.10 1.11 1.03 

Whole dataset Y 1.86 1.01 1.02   1.43 1.44 

Southerly wind N 1.01 2.27 1.03  1.29 1.31 

Northerly wind N 1.99 1.07 1.08  1.16 1.09 

Whole dataset N 1.00  1.85 1.00 2.11 1.01 
1 Note that the logarithm of the northerly component of wind (v; log(v+1)) was not taken for the whole dataset 
analysis and the absolute value of v was used for the northerly wind scenario (when v<0). 

 
 

2.4. Logistic modelling approach 

The histograms shown in Figure 4 also show that the response variable (bacti) was 
zero biased, with many samples returning non-detection results. Consequently, 
quantitative model construction was not possible and a logistic modelling approach 
was required. This approach aimed to model the probability of detection, rather than 
estimating FIB concentrations directly from the explanatory variables.  
 
The form of the logistic model is similar to regular regression shown in equation (1), 
but the response variable (Y) is replaced by a logit function, and there is no error 
term, so the form of the equation becomes:  
 

logit(p) =  β0 +β1X1 + β2X2 + β3X3 ….     (2) 
 
The logit function is defined to be equivalent to the logarithm of the odds ratio for the 
probability (p) of a predefined outcome being successful: 
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logit(p) = log (p/(1-p))      (3) 
 
In this study the detection of FIB would have p = 1 and p=0 for non-detection.  
 
The model derivation of the loadings for the logistic models are determined by the 
base R statistical modelling function ‘glm’ with a binomial distribution applied (RDC 
Team 2011).  
 
The relevant Xi and βi were then determined by backward model selection to minimise 
the Aikeke Information Criterion (AIC; Aikeke 1974), whilst maintaining the explained 
variance (R2) in the models. This process involves constructing a model and 
successively removing the least significant variable from the model until the AIC does 
not decrease. A further check was made to ensure that the standard error in the 
coefficient estimates was not greater than the estimates themselves. If this occurred, 
the least significant variable was removed from the model until this additional criteria 
was met. 
 
 

2.5. Time lag analysis 

A time lag between major sources of FIB and the Motueka River and Kaiteriteri Beach 
were possibly due to the distance between them. In order to allow for this, appropriate 
time lags between changes in candidate explanatory variables and the response 
variable was also explored. Comparison of lagged single explanatory variable 
correlations to observed bacterial beach concentrations was undertaken at hourly time 
steps (up to 12 hours). Maximum absolute correlations were used to determine lags 
for each variable to create an ‘optimal’ lagged model. It is recognised this is not a truly 
optimised lagged model, but it represents an objective method for providing lagged 
model development without requiring an exhaustive number of model permutations. 
 
The lagged modelling approach can allow for the effects of travel time from riverine 
sources to the beach. Although qualitative evidence exists for riverine sourced 
bacteria causing detection of bacteria at and around Kaiteriteri Beach, the possibility 
of local sources is not discounted by this study. Any lagged model was therefore 
compared to an unlagged version – with the best model selected.  
The results of the time lag analysis on the entire dataset, and northerly and southerly 
wind subsets of the data do show variability in the correlation to the response variable, 
with higher Pearson’s correlations seen for some lagged variables (Figures 6, 7, and 
8). 
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Figure 6. Variation in lagged explanatory variable correlations for the whole dataset. 

 
 

 
 
Figure 7. Variation in lagged explanatory variable correlations for a southerly wind data. 
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Figure 8. Variation in lagged explanatory variable correlations for northerly wind data. 

 
 

On the basis of the lagged results, the following lags were applied to the three 
different lagged variable models (Table 5). 

 
 

Table 5. Summary of lags (in hours) applied to the models. 
 

Explanatory 
variable/model 

log(bactiModel + 
1) 

log(flow + 1) log(light + 1) u  log(v + 1)1 

Southerly wind 0 0 7 0 0 
Northerly wind 0 0 1 0 3 
Whole dataset 0 0 0 6 3 

1 Note that the logarithm of the northerly component of wind (v; log(v+1)) was not taken for the whole dataset 
analysis and the absolute value of v was used for the northerly wind scenario (i.e. when v<0). 

 
 

2.6. Performance assessment 

The potential utility of the models fro decision making was ultimately determined using 
methods based on the receiver operating characteristic (ROC) performance results 
(e.g. sensitivity and specificity) for a range of bacterial concentration thresholds (Table 
1).  
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Evaluation of the models through ROC analysis attempted to assess the ability of the 
models to estimate historical rates of true to false positives for different probability of 
bacterial detection thresholds for the model (Pcrit). Depending on the application of the 
model (i.e. used for research, or determining human health issues) the rates of false 
negatives, in particular, may also be important (e.g. assessing the likelihood of 
predicting no exceedance, when MfE Marine Guidelines were actually exceeded).  
 
The performance of the models is determined by assessing the area under a ROC 
curve (AUC) of the true positive to the false positive rate. A value of 0.5 represents a 
random model (not useful) whilst a value of 1 is excellent. This is more formally 
defined using the traditional academic point system (Swets 1988 as referenced by 
Thuiller et al. 2003), where: 0.90-1.00 = excellent; 0.80-0.90 = good; 0.70-0.80 = fair; 
0.60-0.70 = poor; 0.50-0.60 = fail. 
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3. RESULTS AND DISCUSSION 

3.1. Model construction and evaluation 

Models were generally poor at explaining the variance in the response data (R2<0.04), 
even with all candidate explanatory variables used in the model derivation. 
Nevertheless improving the possible utility of the models through backward selection 
was undertaken, the results of this analysis are shown in Table 6.  
 
Variability explained by the final model selections was also poor (R2<0.02), although 
there was some evidence that Motueka River E. coli concentrations are a very weak, 
but significant predictor of enterococci concentrations around the Kaiteriteri Beach 
region. In the case of the best unlagged southerly wind and the whole dataset models, 
modelled riverine E. coli data was the only statistically significant explanatory variable. 
 
In the case of the northerly wind model the only significant explanatory variable was 
the strength of the lagged northerly wind component (log(v+1)).  
 
 

Table 6. Explanatory variable coefficients and their significance from the final model selections; 
Variance explained by models (R2) is also displayed. Note that the models with the 
highest R2 values are highlighted in bold. The symbols used to indicate significance are: 
‘o’ <0.1, ‘*’<0.05, ‘**’<0.01, ‘***’<0.001. 

 
Explanatory 
variable/model Lagged 

log 
(bactiModel 

+ 1) 

log(flow 
+ 1) 

log(light 
+ 1) 

u 
log (v 
+ 1)1 

Intercept R2 

Northerly wind Y     0.9301 

o 
-0.9839*** 0.013

Whole dataset Y  0.1885   -
0.273o 

-1.2271o 0.010

Northerly wind N     0.6254 -0.9598** 0.010
Whole dataset N 0.4882**     -2.4752*** 0.019
Southerly wind N2 0.441o     -2.3738** 0.015

1 Note that the logarithm of the northerly component of wind (v; log(v+1)) was not taken for the whole dataset 
analysis and the absolute value of v was used for the northerly wind scenario (when v<0). 
2 Although a candidate lagged variables were presented to model selection process, the final model only included 
the unlagged BactiModel variable. 

 
 

3.2. Performance analysis 

Despite the small variance explained was observed for the logistic non-
detection/detection model (low value for R2), there was a possibility that the models 
may have had some value for higher concentration threshold management decisions. 
In order to assess the performance of the logistic model for this purpose, the area 
under the ROC curve (AUROC) was calculated (see Section 2.5) for 0, 30 and 140 
cfu/100ml thresholds. 
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The results of this additional assessment confirm that the performance of all the 
models generated for this study was generally poor, although improvements are seen 
in the model performance for higher threshold FIB concentrations (Figures 9, 10 and 
11). The best performing model (lagged northerly wind model) may be considered 
‘fair’ under the traditional academic grade point system, however given the small 
number of samples exceeding this threshold (13 out of 351 samples), a high degree of 
confidence could not be attributed to this result. Additionally, the model performance 
is calculated based on the data used to build the models, so these results should be 
considered to represent the upper bound of model performance.  
 
Independent construction of models based on a subset of the data and testing on 
remaining data would have been undertaken if the results of these initial models were 
better (i.e. at least ‘good’ on the ROC scoring scale). This additional analysis would 
not have produced any useful outcomes for the study, as it requires building the 
models based on a smaller set of data producing ‘worse’ models and therefore would 
be expected to have with similarly poor performance. Consequently this additional 
work was not undertaken with a relocation of time devoted to producing a useful 
model for the Motueka River environment (see Appendix 3). 
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Figure 9. ROC curves for All Data (top), Northerly (middle) and Southerly (bottom), using the 

detection of enterococci (0 cfu/100ml) as a threshold.  
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Figure 10. ROC curves for All Data (top), Northerly (middle) and Southerly (bottom), using 

30 cfu/100ml as a threshold.  
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Figure 11. ROC curves for All Data (top), Northerly (middle) and Southerly (bottom), using the MfE 

Marine Guideline Standard of 140 cfu/100ml as a threshold. 
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4. CONCLUSIONS 

This study has investigated the relationships between potential explanatory variables 
of enterococci concentrations measured at and around Kaiteriteri Beach. Although the 
study did not discover any strong relationships between the candidate explanatory 
variables and measured enterococci concentrations around Kaiteriteri Beach, it does 
show a weak, but significant effect of modelled E. coli concentrations from the 
Motueka River. Similarly, weak relationships with lagged northerly wind strength are 
also observed, suggesting waves may have an influence at the sight under those 
conditions. However, the quality of the models is not sufficient to draw firm 
conclusions from this analysis.  
 
The reasons for poor performance of the models are not entirely clear, but three 
possible reasons (and possible solutions for improvement) are summarised here: 
 

1. The focus on sampling over the summer season means the dataset did not 
include many periods where high enterococci concentrations were observed (i.e. 
only 13 exceedences of the 140 enterococci /100mL threshold). Consequently, 
this bias may have influenced our attempts to build a robust model. Collection of 
more data during wet weather periods may provide better data for building robust 
models in future. 

2. The Motueka River may not have been the major source of enterococci to the 
region. We cannot discount local sources of pollution (e.g. other animals or septic 
tank leakage) which may be important drivers of observed concentrations in the 
region. In order to assess the source of the pollution, microbial source tracking 
techniques to differentiate bacterial sources could be applied to samples with high 
enterococci concentrations to see if the source profiles were similar between the 
river and the beach. 

3. The data-mining approach used in this project was not appropriate for the site. If 
the river is the main source of enterococci to the region, possibly a mechanistic 
approach may have been more successful as was undertaken for the river. This 
would involve tracking riverine sourced bacteria (as defined by the riverine model 
outputs) in a coastal hydrodynamic model to estimate their die-off, dilution and 
dispersal in the marine environment. As is seen in our application of the river 
model of Wilkinson (2008), using a logistic modelling approach can produce 
excellent results.  

 
Although the primary aim of the study was not met, there are a number of useful 
outcomes from the study, namely:  
 

1. The production of a 10 year synthesis of all the explanatory variables used to build 
the model, therefore facilitating any future efforts and possibly of further use in 
other studies undertaken by the Council.  
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2. Development of techniques that could be applied to generate similar classification 
tools for other rivers. 

3. One application of these is the successful construction and testing of an ‘excellent’ 
Motueka River FIB water quality classification tool. 

 
We applied a logistic modelling approach to the river model developed by Wilkinson 
(2008) as an additional task, to generate a Motueka River bacterial water quality 
classification tool (Appendix 3). A separate ROC analysis based on a simple logistic 
model incorporating only the river model estimates suggests the model is “excellent” 
at predicting MfE guideline exceedances for freshwater (see Appendix 3 for details). 
This raises the possibility that the model could be used in a similar manner to other 
models that are in operational use (e.g. Philly RiverCast model 
http://www.phillyrivercast.org/ ).  
 
The Philly RiverCast web page states that:  
 
“65% the time the RiverCast prediction was accurate. 35% of the time the prediction 
was conservative (higher bacteria levels were predicted than measured). There were 
no examples of predicted levels lower than the measured levels.”  
 
Our initial assessment suggests that the Motueka River model is better than the 
PhillyCast predictions (i.e. >80% true positive with a <10% false positive; Appendix 3 - 
Figure 3.1) – therefore this model is considered as a potential tool to provide 
information on the likely FIB water quality classification for the river.  
 
Bacterial water quality for the Motueka River information could prove to be a very 
useful tool for providing information for river users (e.g. kayakers, rafters and 
swimmers) and shellfish gatherers using the mud flat regions close to the river to 
make informed choices about the degree of health risk they expose themselves to. 
Additionally, this information may also help council staff with planning river sampling 
over representative periods.  
 
Our study highlights the difficulties involved in determining for explanatory variables of 
FIB in the coastal environment without an underlying mechanistic framework to 
support statistical model construction and the importance of unbiased and suitably 
stratified sampling data for producing these models. Efforts could be made to improve 
the utility of datasets in order to relate terrestrial explanatory variables to coastal FIB 
concentrations. One method is to increase sampling during and after heavy rainfalls, 
but it would need to be balanced against the costs and the existing needs for the 
operational use of this data (i.e. to protect human health at these sites).  
 
In summary, although the initial objectives of this study have not been met, we 
suggest that the suite of outcomes from the project will be of direct relevance to the 
TDC and other councils. In particular the Motueka River tool has been a successful 
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outcome of the project, and datasets and techniques developed for this study will 
prove useful for other applications. 
 
 

5. ACKNOWLEDGEMENTS 

The Ministry for Science and Innovation are thanked for the provision of funds to 
undertake this work under the Medium Advice Grant scheme for the EnviroLink 
Programme (Regional Council Advice number:  1008-TSDC79). 
 
Trevor James at the TDC is thanked for his timely provision of council bacterial data 
for the region which formed the basis of the modelling work in this study.  
 
Jeremy Wilkinson is acknowledged for the provision of an excel version of his 
Motueka River Model which forms the basis of the R adaptation provided in Appendix 
2 of this report. 
 
Chris Cornelisen is acknowledged for his efforts in reviewing this work and Cherie 
Johansson for editing this report. 
 



MAY 2012 REPORT NO. 2122  |  CAWTHRON INSTITUTE 
 
 

 
 24  

6. REFERENCES 

Akaike H 1974. A new look at the statistical model identification. IEEE Transactions 
on Automatic Control 19 (6): 716-723. 

Blanchard JL, Dulvy NK, Jennings S, Ellis JR, Pinnegar JK, Tidd A, Kell LT 2005. Do 
climate and fishing influence size-based indicators of Celtic Sea fish 
community structure? ICES Journal of Marine Science: Journal du Conseil 62 
(3): 405-411. 

Boehm A, Grant S, Kim J, Mowbray S, McGee C, Clark C, Foley D, Wellman D 2002. 
Decadal and shorter period variability of surf zone water quality at Huntington 
Beach, California. Environmental Science & Technology 36 (18): 3885-3892. 

Boehm AB, Weisberg SB 2005. Tidal forcing of enterococci at marine recreational 
beaches at fortnightly and semidiurnal frequencies. Environmental Science & 
Technology 39 (15): 5575-5583. 

Bordalo AA 2003. Microbiological water quality in urban coastal beaches: the 
influence of water dynamics and optimization of the sampling strategy. Water 
Research 37 (13): 3233-3241. 

Brion GM; Lingireddy S 2003 Artificial neural network modeling: a summary of 
successful applications relative to microbial water quality. Water Sci. Tech. 
47(3), 235–240. 

Cornelisen CD, PA Gillespie, M Kirs, RG Young, RW Forrest, PJ Barter, BR Knight, 
VJ Harwood. 2011a. Motueka River plume facilitates transport of ruminant 
faecal contaminants into shellfish growing waters, Tasman Bay, New Zealand. 
45:477-495. 

Cornelisen CD, Jiang W, Griffiths R. 2011b. Interpreting Northland’s coastal water 
quality monitoring results under different tide conditions. Prepared for 
Northland Regional Council. Cawthron Report No. 2026. 33 p. plus appendices 

Christensen VG, Jian X, Ziegler A 2001. Characterization of surface-water quality 
based on real-time monitoring and regression analysis, Quivira National 
Wildlife Refuge, south-central Kansas, December 1998 through June 2001, US 
Geol. Survey Water Resources Investigations Report 00-4126. 

Diane MLM, Ahlfeld DP 2007. Comparing artificial neural networks and regression 
models for predicting faecal coliform concentrations. Hydrological Sciences 
Journal 52 (4): 713-731. 

Eleria A, Vogel RM 2005. Predicting Fecal Coliform Bacteria Levels in the Charles 
River, Massachusetts, USA. JAWRA Journal of the American Water 
Resources Association 41 (5): 1195-1209. 

Fox, J. 1997. Applied Regression Analysis, Linear Models, and Related Methods. 
Sage Publications, Thousand Oaks, CA. xxi C 597 pp. 



CAWTHRON INSTITUTE  |  REPORT NO. 2122 MAY 2012 
 
 

 
  25

Gillespie PA, Forrest RW, Peake BM, Basher LR, Clement DM, Dunmore RA, Hicks 
DM 2011. Spatial delineation of the depositional footprint of the Motueka River 
outwelling plume in Tasman Bay, New Zealand. New Zealand Journal of 
Marine and Freshwater Research 45 (3): 455-475. 

Ishi S, MJ Sadowsky 2008 Escherichia coli in the environment: Implications for water 
quality and human health. Microbes and Environments 23:101-108 

Maimone M, Crockett CS, Cesanek WE 2007. PhillyRiverCast: A real-time bacteria 
forecasting model and Web application for the Schuylkill River. Journal of 
Water Resources Planning and Management 133: 542. 

Masopust P 2005. High-Resolution Spatial and Temporal Variability and Patterns of 
Escherichia coli in the Charles River. Unpublished M.Sc. Thesis, Northeastern 
University, Boston, 133 p. 

MfE (Ministry for the Environment) 2003. Microbiological Water Quality Guidelines for 
Marine and Freshwater Recreational Area, ME Number: 474 159 p. 

NIWA 2011, Cliflo - NIWA National Climate Database Tool, http://cliflo.niwa.co.nz/ 
(accessed November 2011). 

Noble RT, Weisberg SB 2005. A review of technologies for rapid detection of bacteria 
in recreational waters. Journal of water and health 3 (4): 381-392. 

Olyphant GA, Whitman RL 2004. Elements of a predictive model for determining 
beach closures on a real time basis: the case of 63rd Street Beach Chicago. 
Environmental monitoring and assessment 98 (1): 175-190. 

RDC Team (R Development Core Team) 2011. R: A Language and Environment for 
Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 

Rosenfeld LK, McGee CD, Robertson GL, Noble MA, Jones BH 2006. Temporal and 
spatial variability of fecal indicator bacteria in the surf zone off Huntington 
Beach, CA. Marine Environmental Research 61 (5): 471-493. 

Sanders BF, Arega F, Sutula M 2005. Modeling the dry-weather tidal cycling of fecal 
indicator bacteria in surface waters of an intertidal wetland. Water Research 39 
(14): 3394-3408. 

Schielzeth H 2010. Simple means to improve the interpretability of regression 
coefficients. Methods in Ecology and Evolution 1 (2): 103-113. 

Steets B, Holden P 2003. A mechanistic model of runoff-associated fecal coliform fate 
and transport through a coastal lagoon. Water Research 37 (3): 589-608. 

Swets JA 1988. Measuring the accuracy of diagnostic systems. Science 240 (4857): 
1285. 

Tufail M, Ormsbee L, Teegavarapu R 2008. Artificial Intelligence-Based Inductive 
Models for Prediction and Classification of Fecal Coliform in Surface Waters. 
Journal of Environmental Engineering 134: 789. 



MAY 2012 REPORT NO. 2122  |  CAWTHRON INSTITUTE 
 
 

 
 26  

Thuiller W, Araújo MB, Lavorel S 2003. Generalized models vs. classification tree 
analysis: predicting spatial distributions of plant species at different scales. 
Journal of Vegetation Science 14 (5): 669-680. 

Whitman RL, Nevers MB 2004. Escherichia coli sampling reliability at a frequently 
closed Chicago Beach: monitoring and management implications. 
Environmental Science & Technology 38 (16): 4241-4246. 

Wilkinson J, Jenkins A, Wyer M, Kay D 1995. Modelling faecal coliform dynamics in 
streams and rivers. Water Research 29 (3): 847-855. 

Wilkinson J 2008. Faecal indicator organism modelling (FIB): application to Motueka 
River. Prepared for Integrated Catchment Management project. Cawthron 
Report No. 1454. 

Wilkinson RJ, McKergow LA, Davies-Colley RJ, Ballantine DJ, Young RG 2011. 
Modelling storm-event E. coli pulses from the Motueka and Sherry Rivers in 
the South Island, New Zealand. New Zealand Journal of Marine and 
Freshwater Research 45 (3): 369-393. 

Yamahara KM, Layton BA, Santoro AE, Boehm AB 2007. Beach sands along the 
California coast are diffuse sources of fecal bacteria to coastal waters. 
Environmental Science & Technology 41 (13): 4515-4521. 

Zuur AF, Ieno EN, Elphick CS 2010. A protocol for data exploration to avoid common 
statistical problems. Methods in Ecology and Evolution 1 (1): 3-14. 

 



CAWTHRON INSTITUTE  |  REPORT NO. 2122 MAY 2012 
 
 

 
  27

7. APPENDICES 

Appendix 1. The Motueka River E. coli Model validation. 
 

Model development based on single point model catchment of Wilkinson (2008) 
developed under research contract CO9X0014 for the New Zealand Foundation for 
Research Science and Technology (FRST). Although the report of Wilkinson (2008) 
includes the main details and methodology for the model, the model has been 
updated to include a new light attenuation model. This new model accounts for effects 
of dissolved yellow matter (yBD) and CDOM (k390) based on discussions with Rob 
Davies-Collie (pers. comm. 10/12/2009) and uses the approach taken by Smith et al. 
(1997). The analysis on yBD and k390 using Motueka River data from Woodstock 
yielded the following relationships. 
 

7575.11)ln(1476.5  QyBD    R2=0.6423   (1) 
57707.07294.0390 Qk      R2=0.6436  (2) 

    
Where Q is the river flow. The total light attenuation coefficient (k) was estimated by: 
 

 )log10(k3900.2145)(10log0649.05034.010  yBDk      (3) 

 
It was assumed that these relationships also held for the lower reaches of the river 
(e.g. Woodsmans Bend). This assumption appears justified given the good 
performance of the model at Woodmans Bend, with an adjusted R-squared of 0.6498 
(Table 1.1).  
 

Table 1.1  Linear model parameters and performance statistics of river model results to observations 
comparisons at Woodmans Bend from the period 15 March 2001 to 30 June 2004 
(N=272). 

 

 
 

Call: 
lm(formula = Log10Obs ~ Log10Model, data = calData) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.18633 -0.24306 -0.02053  0.22109  1.38303  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.41342    0.09932   4.163 4.24e-05 *** 
Log10Model   0.75050    0.03350  22.405  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.3776 on 269 degrees of freedom 
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6498  
F-statistic:   502 on 1 and 269 DF,  p-value: < 2.2e-16  
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The model does have a tendency to underestimate observed E. coli concentrations 
during peak events (Figure 1.1, slope = 0.75). Very little data was available to check 
the model performance against low concentration periods (i.e. low flows), although 
they too appear to be underestimated by the model (Figure 1.1). Nevertheless, the 
model appears to be good at predicting the timing and magnitude of flood events 
(Figure 1.2).  
 
Given the performance of the model and its ability to estimate E. coli concentrations in 
the Motueka River, it appears to be a useful candidate variable for use in this study. 
Although not the focus of this study, it may also prove to be a useful tool for 
communicating bacterial contamination to river users in periods where sampling is not 
undertaken and is provided in Appendix 2 for future improvement and modification as 
required. Coupling of this model to a logistic classification of MfE freshwater FIB 
guidelines has also been undertaken, and suggests that this model has some value in 
predicting water quality classifications (see Appendix 3). 
 
 

 
 
Figure 1.1  Comparison of river model results to measurements at Woodsman’s Bend over the period 

15 March 2001 to 30 June 2004 (N=272). 
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Figure 1.2. Comparison of modelled to measured riverine E. coli concentrations over the April 2009 

Motueka flood event.  
 
 
In a further exploration of bacterial drivers of riverine concentrations in the catchment 
the single point model used here has since been updated by Wilkinson et al. (2011) to 
include multiple catchments. This model appears to offer an improved fit to observed 
data, however statistics are not available to quantify this. 

 
 
Appendix 1 References: 

Smith DG, Davies-Colley RJ, Knoef J, Slot GWJ 1997. Optical characteristics of New 
Zealand rivers in relation to flow. JAWRA Journal of the American Water 
Resources Association 33 (2): 301-312.  

Wilkinson J 2008. Faecal indicator organism modelling (FIB): application to Motueka 
River. Prepared for Integrated Catchment Management project. Cawthron 
Report No. 1454. 

Wilkinson RJ, McKergow LA, Davies-Colley RJ, Ballantine DJ, Young RG 2011. 
Modelling storm-event E. coli pulses from the Motueka and Sherry Rivers in 
the South Island, New Zealand. New Zealand journal of Marine and 
Freshwater Research 45 (3): 369-393. 
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Appendix 2. R version of the Motueka River E. coli Model  
 
motRiverFIBmodelFn<-function(flowIn, lightIn, tempIn, initBacti=NULL, 
initChannelStore=NULL, Ni=NULL){ 
# R implementation of Motueka River Model developed by RJ Wilkinson (2008) 
# Reference: Wilkinson J 2008. Faecal indicator organism modelling 
# (FIB): application to Motueka River. 
# Prepared for Integrated Catchment Management project. 
# Cawthron Report No. 1454. 
# 
# Further improvements to the model have been undertaken and are described in: 

# Wilkinson RJ, McKergow LA, Davies-Colley RJ, Ballantine DJ, Young RG 2011 
#Modelling storm-event E. coli pulses from the Motueka and Sherry Rivers in the 
#South Island, New Zealand. New Zealand Journal of Marine and Freshwater 
#Research 45 (3): 369-393. 

# 
# Adapted for use in R by Weimin Jiang and Ben Knight 2011 
# 
# BRK: Note updated to new light shading model added to account for yellow matter  
# (yBD) and CDOM (k390) as suggested by RD Collie (10/12/2009) 
#  
# yBD=-5.1476*ln(Q)+11.7575 (and =0 if yBD<0) r2=0.6423 
# k390=0.7294*Q^0.57707, r2=0.6436 
# 
# see e.g. ref: 
# Smith DG, Davies-Colley RJ, Knoef J, Slot GWJ 1997. 
# Optical characteristics of New Zealand rivers in relation to flow.  
# JAWRA Journal of the American Water Resources Association 33 (2): 301-312. 
 
if(is.null(initBacti)) initBacti<-100 #intial bacterial concentration 
if(is.null(initChannelStore)) initChannelStore<-6e9  #initial channel store for the 
riverine bacteria 
if(is.null(Ni)) Ni=3250000000 #model bacti input... per second 
 
#input data static 
riverlength=20000 #m 
maxQ=1e3 #max river flow (m3) 
dt=3600 #secs 
bedSplit=0.945 #fraction of bacti going to settle in bed vs. water column 
ErosionRate=0.02 
smoothVal=0.91  #smoothing param for output 
dieOff.mult=1  #adjustable dieoff multiplier 
dieOff.TempConsts=c(0.1068, 0.0709) 
dieOff.LightConsts=c(0.0089, 1.011) 
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#new light attn model data 
light.CDOMConst=c(0.57707, 0.7294) 
light.clarConst=c(-5.1476, 11.7575) 
light.attnConsts=c(-0.5034, 0.2145, -0.0649) 
 
 
## start model 
ChannelStore=initChannelStore 
#Bacti=Q(:)*0; 
Bacti<-as.vector(flowIn)*0 
toSuspension=Bacti 
chanScour=Bacti 
Bacti[1]=initBacti 
 
for(it in 2:length(flowIn)){ 
    # transport vars 
    #calc derived vars for the mot river 
    vel=0.1061*flowIn[it]^0.5477 
    traveltime=riverlength/(vel*3600) #time in hours 
    crosssectionArea=12.577*flowIn[it]^0.3256 #m2 
    wettedVol=crosssectionArea*riverlength #m3 
    depth=0.37*flowIn[it]^0.1813 #m 
 
    #calc clarity and attenuation 
    clarity=light.clarConst[1]*log(flowIn[it])+light.clarConst[2] 
    clarity[clarity<0.05]<-0.05 #minimum clarity 
    CDOM=light.CDOMConst[2]*flowIn[it]^light.CDOMConst[1] 
    
lightAttn=10^(light.attnConsts[3]+light.attnConsts[1]*log10(clarity)+light.attnConsts[2]* 
                log10(CDOM)) 
   
    #calc total dieoff from light + temp dieoff for surf, depth avg and bottom 
    tmp=dieOff.TempConsts[1]*tempIn[it]^(dieOff.TempConsts[2])/24 
    dieOff.surf=dieOff.LightConsts[1]*lightIn[it]^(dieOff.LightConsts[2])/24+tmp 
    depAvgLight=(lightIn[it]/(lightAttn*depth))*(1-exp(-lightAttn*depth)) 
    dieOff.depAvg=dieOff.LightConsts[1]*(depAvgLight)^(dieOff.LightConsts[2])/24+tmp 
    dieOff.bottom=dieOff.LightConsts[1]*(lightIn[it]*exp(-                                             
                                   lightAttn*depth))^(dieOff.LightConsts[2])/24+tmp 
    if (flowIn[it]>flowIn[it-1]){ 
      deltaQi=(flowIn[it]-flowIn[it-1])/maxQ 
    } else{ 
      deltaQi=0 
    } 
     
    #Calc Channel store 
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    channeldieoff=dieOff.bottom*dieOff.mult 
    Nin=(Ni*dt*(1-dieOff.surf)) 
    Erosion=ErosionRate*ChannelStore*deltaQi 
    Erosion[Erosion>ChannelStore]<-ChannelStore #can't erode more than in channel 
    ChannelStore=ChannelStore+Nin*bedSplit*(1-log10(flowIn[it])/log10(maxQ))-  
                                  ChannelStore*channeldieoff-Erosion 
    ChannelStore[ChannelStore<0]<-10 #keep min number in channel 
     
    #calc bacti concs 
    chanScour=flowIn[it]*Erosion/(wettedVol*1e4) 
    toSuspension=Nin*(1-bedSplit)*log10(flowIn[it])/log10(maxQ)/(wettedVol*1e4) 
    Bacti[it]=(smoothVal-dieOff.depAvg)*Bacti[it-1]+(toSuspension+chanScour)*(1-  
                     smoothVal) 
    if(Bacti[it]<0) Bacti[it]<-0  
    } 
    return(list(Bacti=Bacti,ChannelStore=ChannelStore)) 
} 
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Appendix 3. Performance of the FIB River Model for operational use. 
 
Application of the mechanistic river model as a tool for predicting riverine E. coli 
concentrations was undertaken to see the mechanistic model output may be a useful 
tool for providing information on the water quality with respect to Ministry for the 
Environment (MfE) Microbiological Assessment Category (MAC) definitions (MfE, 
2003; Table 3.1). The same process for testing the performance of the river model 
data was used as was described for the beach data (see section 2 of this report) 
assuming the application of a logistic GLM model, fitted to a model of the form: 
 
Y = mX+C 
 
Where Y is a binary form of the logged measured data, calculated on the basis of the 
MAC definitions (Table 3.1), X is the modelled data, m is the slope and C in the 
intercept.  
 
 

Table 3.1. Microbiological Assessment Category (MAC) definitions (reproduced from MfE 2003). 
 

MAC Guideline Definition 
A Sample 95 percentile > 130 Escherichia coli per 100 mL 

B 
Sample 95 percentile 131 - 260 Escherichia coli per 100 
mL 

C 
Sample 95 percentile 261 - 550 Escherichia coli per 100 
mL 

D Sample 95 percentile >550 Escherichia coli per 100 mL. 
 
 
The coefficients from the fitting process undertaken in R are shown in Table 3.2 
below. The results from the new model were then compared to the data they were 
built on to get an initial idea of the model performance using the ROC analysis (see 
Section 2.5 of this report).  
 
 

Table 3.2. Results of logistic model coefficients (slope and intercept) for differing MAC threshold 
definitions.  

 
MAC 

Model Slope/intercept Estimate 
Std. 
Error z value Pr(>|z|) 

B 
Intercept -8.7028 1.2998 -6.696 2.15E-11 
Slope 3.9416 0.5244 7.517 5.60E-14 

C 
Intercept -11.2208 1.4707 -7.629 2.36E-14 
Slope 4.1098 0.5115 8.034 9.40E-16 

D 
Intercept -9.7228 1.2782 -7.606 2.82E-14 
Slope 3.0982 0.4066 7.621 2.52E-14 
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The result of the ROC analysis show that the models have the potential to provide 
‘excellent’ prediction of MACs for the river at Woodmans Bend (Figure 3.1) based on 
the traditional academic point scale for assessing the Area under an ROC curve. 
Other similar approaches are in operational use  (e.g. Philly RiverCast 
http://www.phillyrivercast.org/ ). The Philly RiverCast webpage states that:  
“65% the time the RiverCast prediction was accurate. 35% of the time the prediction 
was conservative (higher bacteria levels were predicted than measured). There were 
no examples of predicted levels lower than the measured levels.”  
 
Given our assessment suggests this model has a >80% true positive rate with a <10% 
false positive rate (Figure 3.1), on this basis we recommend this model is considered 
as a potential tool to provide information on the likely river quality classification in the 
region.  
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Figure 3.1.  Receiver operator curves for logistic model based on FIB river model compared to all 

observed data at Woodmans Bend for MfE  MAC definitions: B (>131 E. coli/100mL, 
bottom), C (>261 E. coli/100mL, middle), D (>550 E. coli/100mL, top). 
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