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Summary 

Project and Client 

A method for soil quality monitoring was developed through the 500 Soils Project to meet 

RMA requirements for regional authorities to provide State of Environment (SoE) reporting 

on soils. A database of the soil quality data utilising the ‘500 Soils’ approach has recently 

been compiled under an Envirolink Tools grant. This database is potentially of value to 

smaller Regional Councils who do not have active soil quality programmes, as the soil 

order/land use combinations established in other regions could be applicable across regional 

boundaries. However, spatial statistics of the data set need to be verified and gaps in soil-

order/land-use combinations assessed. To assess these needs Gisborne District Council and 

Southland Regional Council co-sponsored this report through two Envirolink advice grants. 

Objectives  

These linked projects will provide: 

1. Quantitative statistical information on the “robustness” of the soil quality data set 

using spatial autocorrelation models. 

2. Re-testing initial assumptions around soil order and land use associations generated 

from the initial 500 Soils Project. 

3. Assessment where there are gaps in the current monitoring. 

Methods 

Values for the seven soil quality indicators (pH, total carbon (C) and  nitrogen (N) 

concentration, Olsen P, anaerobically mineralisable N, bulk, macro-porosity(measured at –5 

kPa tension) and bulk density), along with spatial location, land use and soil order, were 

extracted from 811 soil quality site records. In addition to these seven soil quality factors, the 

carbon-to-nitrogen ratio (C/N) was also used as a pseudo-indicator. The most recent sampling 

data available at time of analysis was used for sites that have been visited more than once. 

Spatial statistics on the individual indicators and multivariate statistical tests (principal 

components analysis and fuzzy logic clustering) were employed to characterise the data set as 

a whole. 

Results and Conclusions 

 Indicator means from the current dataset differed slightly from the original 500 soils 

data but measures of variance were similar, supporting the underlying assumptions 

made from variance calculations in the original dataset (i.e. sample number calculations 

made based on variance). 

 Principal component analysis indicated that although the organic, physical, chemical, 

and fertility components derived in the initial dataset were still present to an extent, the 

distribution of soil quality indicators in the principal components is more evenly 
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distributed in the present dataset than in the initial 500soils analysis. The soil-order and 

land-use factors are still highly significant, but the variation explained by these factors 

is somewhat less (about 3% less for land use and about 9% less for soil order) than in 

the initial analysis. 

 Spatial autocorrelation analysis of the dataset suggests essentially no autocorrelation for 

AMN and pH, medium range autocorrelation for macroporosity and Olsen P (28–

40 km), and longer range autocorrelation for Total C and N (~100 km). Comparison 

with a larger MfE dataset indicates that the range for C (~23.4 km) was considerably 

shorter than our dataset and that use of multiple data sets would be preferable. The 

autocorrelation ranges indicate that samples taken within the range would show some 

degree of correlation. This does not negate the validity of sites within the range but 

indicates that corrections may need to be applied to statistical testing to validate 

assumptions that samples are independent (i.e. not correlated).   

 For managed land uses (cropping, dairy pasture, drystock pasture, horticulture, and 

forestry) our initial cluster analyses indicated that a six-cluster configuration yielded 

clusters that gave meaning separation between soil order and land use interaction. The 

clusters formed primarily around the organic (total C, total N, AMN) and physical (bulk 

density and macroporosity) components of the soil quality indicators.  

 The overall statistical basis of the 500 soils sampling strategy appears to be sound, 

though gaps exist in the stratification of soil-order/land-use combinations (particularly 

for Raw, Anthropic, Ultic, Podzol, Organic, Semi-arid, and Melanic Soils). 

Additionally, the spatial distribution of sampling sites throughout the country is patchy 

and non-uniform. 

 The cluster analysis suggests that soil “phenotypes” exist and these groupings may 

prove useful in simplifying soil order/land use stratification. Further work would be 

needed, however, to derive optimal groupings (e.g. groupings that yield the lowest total 

variance). 

Recommendations 

 The soil quality dataset (and soil quality results from other regions particularly 

regarding land use trends) are valuable in assisting smaller regions in planning soil 

quality programs. However, there are still gaps that need be filled.   

 Utilisation of other databases (NSD, soil carbon monitoring, LMI) are likely to be 

useful for filling gaps in land-use/soil-order interactions and spatial coverage, though 

conversion factors for various sampling depths would need to be derived. 

 Refining the cluster analysis groupings after utilising data within other databases 

(above) could potentially simplify stratification of soil-order/land-use combinations and 

therefore the sampling strategy for smaller regional councils who do not have active 

soil quality programs. 

 Currently, soils are grouped only by soil order. For most soil orders this appears to be 

sufficient, however, Brown, Recent, and Gley Soils appear to be somewhat more 

variable than most other soils (discounting soils orders with <15 samples). Use of 

subgroup designations or linking the particular soil series to S-MAP sibling attributes 

could potentially provide greater resolution for theses soils orders in particular. 
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 The ‘500 soils program’ was designed to give regions flexibility in sampling sites that 

were of greatest concern in that particular region, however, more coordination in 

selection of sites between regions would also assist in filling gaps in the land use/soil 

type stratification. The Land Management Forum (LMF) could assist in this role. 

 The goals of the ‘500 Soils’ approach to soil quality monitoring should be reviewed in 

the advent a “national SOE reporting” program is announced. There are likely to be 

differences in scale and approach. For example, additional indicators may be desired 

for national reporting and selection criteria for sites (particularly of managed land use 

sites versus indigenous sites) could differ.  
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1 Introduction 

To increase soil quality understanding in New Zealand a Sustainable Management Fund 

Project (#5089), Implementing Soil Quality Indicators for Land was initiated in 1999. The 

project, referred to as the “500 Soils Project”, collected new soil quality data from 

approximately 500 sites (508 sites, roughly one site per 25 km
2
) selected by the various 

participating Regional Authorities from April 1999 to June 2001.Before the 500 Soils Project 

there was no nationally consistent or scientifically based soil quality monitoring data for New 

Zealand. Soil quality sampling by regional councils has continued to the present and the 

methods developed through the 500 Soils project have been used to meet RMA requirements 

for regional authorities to provide State of Environment (SoE) reporting on soils (Lilburne et 

al. 2002, 2004; Sparling et al. 2004;Sparling &Schipper 2004).  

Principal component analysis by Schipper and Sparling (2000) related the variance of 

indicator values to acidity, organic resource, physical and chemical components. Sparling et 

al. (2004) also used an analysis of variance approach to estimate the proportion of total 

variance explained by soil order (12–49%), land use (21–39%), while the total variation 

explained by the factors (and interactions) was 50–68%. Consequently, the SINDI system for 

interpretation of soil quality indicator values (Sparling et al. 2003, 

http://sindi.landcareresearch.co.nz/) used land-use type and soil order to categorize soil 

quality indicator target values.  

A database of the soil quality data utilising the 500 Soils approach (including the original 500 

soils data and subsequent sampling) has recently been compiled under an Envirolink Tools 

grant. This dataset may be of value to smaller Regional Councils who do not have active soil 

quality programmes, as the soil-type/land-use combinations established in other regions could 

be applicable across regional boundaries. Progress has been made in understanding the 

variation of key dynamic soil properties by soil quality researchers, and it had been 

envisioned that periodic review of the 500 soils programme should be undertaken (Hill et al. 

2003). In this study we utilise a number of different multivariate analysis and clustering 

approaches to examine the expanded soil quality dataset.  

2 Objectives 

Using the soil quality dataset: 

 Compile quantitative statistical information on the “robustness” of the soil 

quality data set using spatial autocorrelation models. 

 Retest initial assumptions around soil type and land use associations generated 

from the initial 500 Soils project. 

 Assess where there are gaps in the current monitoring. 

 

http://sindi.landcareresearch.co.nz/
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3 Methods 

Values for the seven soil quality indicators (pH, total carbon (C), total nitrogen (N), Olsen P, 

anaerobically mineralisable N, bulk density, and macroporosity), along with spatial location, 

land use, and soil type were extracted from the soil quality database. There were 809 site 

records available at the time of analysis. For indicators measured gravimetrically, the data 

were expressed on area (total C and total N) or volumetric (AMN, Olsen P) basis. 

Macroporosity measured at –5 kPa was used in this analysis as there were sites that did not 

have the –10 kPa macroporosity measurement. Though technically not an indicator, the C/N 

ratio was also included for two reasons. First, it is easily derived from total C and total N, and 

is widely accepted as a useful indicator of organic matter condition. Second, in the 500Soils 

dataset, C and N are strongly correlated (correlation 0.81), while the C/N ratio is essentially 

uncorrelated with C (correlation 0.08) and only moderately correlated with N (correlation –

0.44), so the C/N ratio provides useful additional information over and above that provided 

by C and N separately.  

We analysed the SINDI soil quality dataset in R(R Development Core Team2012). Data from 

the latest available sampling date were used for sites that have been visited more than once, 

and records from previous visits were excluded. Where applicable, values were expressed on 

a volumetric (or area basis for C and N) to facilitate comparison to the earlier statistical 

analysis of the 500 soils dataset (Hill et al 2003, Sparling et al. 2004). Additionally, records 

were only retained for analysis if all seven indicators were available. Transformations were 

carried out on Olsen P, anaerobically mineralisable N (AMN), and macroporosity (MP) to 

avoid the strong skewing of the data towards small values. A log-transformation was applied 

to Olsen P, and square-root transformations to AMN and MP, and the transformed quantities 

were quite close to Gaussian distributions. Although the subsequent analysis does not strictly 

require Gaussian-distributed variables, the analysis is simpler and generally more reliable if 

the analysed quantities have a more-or-less symmetric distribution. 

For Olsen P, one zero value was replaced by the minimum of the non-zero values, to avoid 

difficulties with the log-transformation. The data were split into a spatial and an aspatial 

dataset, with 722 and 794 rows in each. The spatial dataset, which is a subset of the aspatial 

dataset, was used for spatial autocorrelation analysis, while the aspatial dataset was used for 

the cluster and principal component analysis. 

To examine spatial autocorrelation, empirical and model semi-variograms were fitted to the 

spatial data for each (possibly transformed) quantity. For the model variograms, only an 

exponential shape (with a nugget) was considered, as trying an alternative was not thought to 

provide any obvious advantage. 

Principal component analysis (Manly 2005) was used for three reasons. First, it was hoped 

that the variability of the various quality factors would be largely explained by a few of the 

principal components (PCs), thus providing a slightly more economical way of expressing the 

relationships. Second, the PC analysis provides information concerning which indicators 

provide the greatest variation in the dataset, and gives some clues as to their meaning. 

Finally, the PCs provide a simplified way to describe the variation of soil and land-use 

classes. 

In order to investigate whether the soil records exhibited natural grouping we used cluster 

analysis, which aims to partition the soil observations into one of a fixed number of clusters. 
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In this project we used fuzzy c-means clustering (Bezdek 1981), which is a method of natural 

data clustering very similar to the k-means clustering algorithm (Lloyd 1982), but which has 

better convergence properties. In fuzzy clustering, each point has a degree of membership of 

belonging to all clusters (as in fuzzy logic) so that points at the edge of a cluster will have a 

lower degree of membership when compared with points in the centre of a cluster. The fuzzy 

c-means method requires an initial estimate of the number of clusters, begins with a random 

assignment of points to clusters, and also requires a fixed fuzzification factor (greater than 1) 

that describes the degree of membership variability of the points in the cluster. In this study, 

we tested candidate fuzzy c-means clustering for 4–7 clusters, with a range of different 

fuzzification factors. 

4 Results 

4.1 Basic statistics and distribution of soil types 

Table 1 presents mean and variance measures for the current dataset and the original 500 

Soils dataset. Mean indicator values differ to some extent but variance parameters are 

generally similar for the two data sets. Additionally, current distribution of sites by soil order 

and land use is shown in Appendix 1, and mean and variance measures by soil order shown in 

Appendix 2. 

Table 1Basic statistics for the current soil quality dataset and the original 500 soils dataset 

 

pH Tot C Tot N lg C/N
1
 sr AMN

1
 lg Olsen P

1
 BD sr MP

1
 

  

Mg ha
-1

 Mg ha
-1

 

 

ug cm
-3

 ug cm
-3

 Mg m
3
 % 

     Current data set  

       Mean 5.81 54.2 4.42 2.53 10.17 3.06 0.94 3.52 

    

(12.5) (103) (21.3) 

 

(12.4) 

CV (%) 9.4 37.8 39.9 9.8 32.0 35.4 27.8 34.0 

Se 0.02 0.72 0.06 0.01 0.11 0.04 0.01 0.04 

lower quartile 5.45 40.09 3.00 2.37 8.25 2.38 0.74 2.67 

              Original 500 Soils date set  

      Mean 5.73 53.4 4.23 2.56 10.16 2.87 0.89 3.69 

    

(12.9) (103) (17.6) 

 

(13.6) 

CV (%) 9.1 37.9 41.5 9.2 28.4 37.9 27.5 31.3 

Se 0.02 0.90 0.08 0.01 0.13 0.05 0.01 0.05 

lower quartile 5.41 39.33 2.81 2.40 8.28 2.14 0.72 2.80 

1
For transformed (lg-log, sr-square root) indicators the back-transformed mean is shown in parenthesis.  

Distribution of sites in the original 500 soils dataset by land use was 12%, 24%, 27%, 13%, 

8%, 11%, for cropping, dairy, drystock, forestry, horticulture, and indigenous forest 

respectively, compared with 15%, 24%, 26%, 14%, 10%, 9% in the current dataset. 
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Distribution of sites in the original 500 soils dataset by soil order was 22%, 18%, 7%. 5%, 

2%, 2%, 8%, 2%, 11%, 18%, 5% for Allophanic, Brown, Gley, Granular, Melanic, Organic, 

Pallic, Podzol, Pumice, Recent, and Ultic soils respectively compared with 19%, 20%, 8%, 

5%, 2%, 2%, 12%, 2%, 9%, 17%, 4% in the current dataset. 

4.2 Spatial Analysis 

Most statistical analyses assume that samples are uncorrelated. Spatial analysis calculates the 

range under which there is some degree of correlation between samples. Empirical and model 

semi-variograms were fitted to the spatial data for each (possibly transformed) quantity. For 

the model semi-variograms, only the exponential shape (with nugget) was considered, as it 

was not thought there was any obvious advantage trying an alternative. Semi-variograms 

were successfully fitted to all factors, except for bulk density (BD), which is curious, as 

statistically it is usually a well-behaved parameter.  

Figure 1 shows the empirical and model semi-variograms for six parameters, using 5km bins. 

The results suggest significant spatial correlation for C, N, log(Olsen P) and sqrt(MP). There 

is perhaps some evidence of spatial autocorrelation for sqrt(AMN) and pH, but the 

autocorrelation distance for both is so short that the estimates may be unreliable. In these 

latter cases, it would be prudent to reduce the bins size to (say) 1 km, to get better resolution 

towards zero point-to-point distance. This reduction in bin size causes an increase in scatter, 

which makes the variogram difficult to interpret, so some subjective trade-off is required. A 

subsequent analysis with 1-km bin size for sqrt(AMN) and pH suggested that the 

autocorrelation distance is no more than a few kilometres for pH and sqrt(AMN). However, 

as these estimates are based on a relatively small number of samples with small point-to-point 

distance, the autocorrelation distance estimate would be subject to high uncertainty. 

The values for the variogram fits are shown in Table 2. Note that the value for the correlation 

range for carbon (97.8 km) is considerably larger than the figure calculated using a 

combination of NSD, MfE soils and LMI data of 24.1 km (McNeill 2012). Presumably the 

much larger dataset in the latter study (with approximately three times the number of samples 

as the 500-soils) provides better mathematical support for short point-to-point distances, and 

probably yields values of higher accuracy for the spatial autocorrelation distance. Also note 

that the figures for sqrt(AMN) and pH were for a much smaller bin size than was used for the 

other quality factors, and the estimates are likely to have high uncertainty. 

Given the short correlation range distances for sqrt(AMN) and pH (1.9 and 2.2 km 

respectively) when compared with the other quality factors, and the likely uncertainty of 

these estimates, it can be assumed that these two factors are essentially spatially uncorrelated. 

This conclusion would not be true for C and N concentration, Olsen P or MP. 
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Table 2 Summary of parameters from the spatial autocorrelation analysis, showing the parameters for an 

exponential kernel with nugget effect 

Parameter Nugget Sill Range (km) Bin size (km) 

Tot C 252 153 97.8 5 

Tot N 1.99 1.58 95.6 5 

sqrt(AMN) 2.52 4.18 1.85 1 

Log(Olsen P) 0.624 0.707 40.2 5 

pH 0.097 0.168 2.19 1 

sqrt(MP) 0.867 0.587 28.4 5 

 

It was not possible to fit a satisfactory semi-variogram to bulk density. The empirical semi-

variogramusing5-km bins in Figure 2 shows what could be interpreted as short-distance 

autocorrelation, plus unusual large-distance correlation as well. This type of empirical semi-

variogram is not well described by the exponential spatial kernel, or by any other commonly 

used kernel shape. 

A better picture of the spatial behaviour for bulk density can be obtained by calculating the 

semi-variogram for eight different directions from 0 to 157.5 degrees (22.5 degree steps 

between 0 and 180 degrees). The result in Figure 3 shows considerable variation in the semi-

variogram shape for large point-to-point distances, but reasonably consistent behaviour for 

point-to-point distances up to 100 km. However, it was not possible to fit a semi-variogram 

by excising point-to-point distances above 200km, suggesting that either the exponential 

model was faulty, and/or the spatial autocorrelation distance was too short for the available 

data. The variation in the semi-variogram distances of 250km or more for different directions 

suggests some complex contrasting relationship between regional groups of soil data. 

However, the semi-variogram is calculated using the limited 500-soils dataset. A much larger 

dataset would be required to determine if these regional contrasts were consistent, or merely 

an artefact of the dataset. In any case, the impression from the semi-variogram plots of Figure 

3at very small point-to-point distances is that there is little evidence of spatial autocorrelation. 
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Figure 1 Semi-variograms for six of the soil quality factors (excluding bulk density). In each case, an 

exponential kernel was fitted with a nugget, and a 5-km bin size was used.  
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Figure 2 Plot of the empirical semi-variogram for bulk density, using 5-km bins. 

 

Figure 3 Plots of the empirical semi-variance of soil bulk density, for eight different directions from 0 to 180 

degrees (22.5 degree steps). In each case, the orientation in degrees of the semi-variogram calculation is shown 

in the panel title. 
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4.3 Principal Components (multivariate analysis) 

The objective of principal component analysis is to take the eight soil quality parameters (pH, 

C and N concentration, log(C/N ratio), log(Olsen P), sqrt(AMN), BD, sqrt(MP)), and find 

linear combinations of these to produce indices      (principal components) that are 

uncorrelated and arranged in decreasing order of importance of variation. In principal 

component analysis of the original 500 soils data, the soil quality indicators grouped within 

the  principal components corresponded to organic (total C, total N, AMN), physical (bulk 

density and macroporosity), fertility (Olsen P) and chemical (pH) aspects of the soil.   

By convention, since all the quality factors are measured with different scales, the quality 

factors are centred (the mean value is removed) and scaled by the standard deviation of the 

samples. The linear factors that are used to form the PCs are shown in Table 3 (all sites 

including indigenous and tussock) and Table 4 (managed sites only), while plots of the 

proportion of variance associated with each PC, and the cumulative total variance (for 

managed sites) are shown in Figure 4. The principal components analysis performed on the 

initial 500 soils data (Sparling et al. 2004) showed distinct components related to soil organic 

(total C, total N, AMN), fertility (Olsen P), physical (bulk density, macroporosity) and 

chemical (pH) attributes. Although these elements are still present to an extent, our analysis 

of the current dataset indicated a more complex, and less dominant mixture of the primary 

soil quality indicators within each component. Because of the complex mixture of 

components, axis rotation (e.g. Varimax) was not performed in the present analysis. 

For all sites and for managed sites only, approximately 90% of the total variation is explained 

by the first five of the eight PCs, so the decomposition does not drastically reduce the 

dimensionality of the eight-variable dataset by much. However, the first two PCs are notably 

dominant when compared with the other six PCs. The first PC can be interpreted as a contrast 

between C and N concentration, log(Olsen P) and sqrt(AMN) (with pH contributing a minor 

effect) on one hand, against log(C/N ratio) and sqrt(MP) on the other. Bulk density appears to 

contribute little to the effect of this first PC. The second PC could be interpreted as a contrast 

between C concentration, N concentration, and log(C/N ratio) in one group, and pH, 

log(Olsen P), and BD in a second group. The effect of sqrt(AMN) and sqrt(MP) is quite small 

for this PC. Similar interpretations could be attached to higher order PCs, although they 

would have less relevance as the PC order is increased. It is interesting to note that the 

contribution of each factor to the PCs varies considerably. C concentration has a consistently 

strong effect for all PCs, while the effect of N concentration, log(C/N ratio), log(Olsen P), 

and sqrt(AMN) is somewhat less pronounced. BD has a strong effect in only a few PCs, and 

other factors have effects that differ from one PC to another. 

Comparing the two sets of linear factors in Table 3and Table 4 (all sites versus only managed 

sites respectively) it appears that most of the coefficients are broadly the same. A notable 

exception is PC 4, which has significantly different factors applied to each of the quality 

factors; presumably these differences for PC 4 reflect the modest influence of indigenous 

sites. 
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Table 3 Coefficients of the principal components for eight soil quality factors on all sites 

  Principal component number 

  1 2 3 4 5 6 7 8 
So

il 
q

u
al

it
y 

fa
ct

o
r 

pH 0.267 -0.366 -0.507 -0.106 -0.710 -0.141 -0.046 0.021 

Cconc 0.243 0.534 0.053 -0.402 -0.218 0.112 0.262 -0.603 

Nconc 0.444 0.372 -0.129 -0.038 0.019 0.273 0.297 0.695 

logCNratio -0.410 0.223 0.345 -0.473 -0.348 -0.398 -0.096 0.388 

logOlsenP 0.377 -0.214 -0.151 -0.606 0.527 -0.317 -0.211 0.012 

sqrtAMN 0.403 0.233 0.176 0.474 -0.025 -0.725 0.022 -0.047 

BD 0.130 -0.528 0.470 -0.105 -0.037 -0.030 0.686 0.001 

sqrtMP -0.428 0.118 -0.575 0.000 0.217 -0.329 0.563 -0.014 

 

Table 4 Coefficients of the principal components for eight soil quality factors on managed sites 

  Principal component number 

  1 2 3 4 5 6 7 8 

So
il 

q
u

al
it

y 
fa

ct
o

r 

pH 0.193 -0.403 -0.597 -0.099 -0.644 0.135 -0.021 0.019 

Cconc 0.319 0.480 -0.105 0.368 -0.222 -0.142 0.280 -0.611 

Nconc 0.490 0.307 -0.106 -0.024 0.012 -0.269 0.304 0.699 

logCNratio -0.382 0.280 0.091 0.586 -0.370  0.382 -0.079 0.366 

logOlsenP 0.328 -0.275 -0.336 0.558 0.554 0.241 -0.167 0.015 

sqrtAMN 0.439 0.151 0.288 -0.314 -0.022 0.774 0.020 -0.052 

BD 0.028 -0.546 0.409 0.242 -0.085 0.017 0.684 0.001 

sqrtMP -0.416 0.193 -0.500 -0.206 0.292 0.293 0.571 -0.017 
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Figure 4 (Left) Bar plot of the proportion of the total variance explained by each principal component (managed 

sites only, see Table 4), with the proportion printed above each bar. (Right) Cumulative plot of the proportion of 

variance explained by principal components. 

4.4 Variability as a function of land use and soil type 

For each soil quality factor, it is of interest to know the degree to which the total variability is 

explained by land use, soil order, and the interaction between these two factors. This is a type 

of analysis of variance (ANOVA), where the principal assumption is that the residuals are 

Gaussian distributed. In this case, the distribution of the ANOVA residuals was tested by eye 

using Gaussian quantile plots, and in most cases the residuals conformed closely to an 

assumption of Gaussian residuals. The exception to this was C concentration, where there 

was a tendency for the residuals to have a long tail; this perhaps indicates that a 

transformation might have been required. In any case, the resultant F-value from the ANOVA 

was sufficiently high that it is unlikely the conclusions from the analysis would have 

changed. 

Table 5 (all sites) and Table 6 (managed land-use sites only) provide values for the 

proportion of variance explained by each of land use, soil order, and their interaction, as well 

as the combination of all these terms. The last of these figures corresponds to the unadjusted 

   of the corresponding linear model for a soil factor response, with land use, soil order, and 

their interaction as explanatory variables.  
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Table 5 For all sites, the proportion of variance associated with each soil quality factor that is explained by land 

use, soil order, or the interaction between land use and soil order. The furthest right column is the proportion of 

variance explained by all terms 

 Land use Soil order Land use: 
Soil order 

All terms 

pH 0.349 0.063 0.060 0.471 

Tot C 0.174 0.270 0.064 0.508 

Tot N 0.266 0.183 0.062 0.510 

log(CN ratio) 0.303 0.107 0.055 0.465 

log(Olsen P) 0.358 0.053 0.057 0.469 

sqrt(AMN) 0.356 0.066 0.064 0.486 

BD 0.181 0.402 0.042 0.625 

sqrt(MP) 0.276 0.088 0.056 0.420 

 

Table 6 For managed sites, the proportion of variance associated with each soil quality factor that is explained 

by land use, soil order, or the interaction between land use and soil order. The furthest right column is the 

proportion of variance explained by all terms 

 Land use Soil order Land 
use:Soil 
order 

All terms 

pH 0.356 0.068 0.067 0.491 

Tot C 0.160 0.269 0.071 0.499 

Tot N 0.289 0.182 0.063 0.534 

log(CN ratio) 0.360 0.100 0.059 0.519 

log(Olsen P) 0.417 0.051 0.057 0.525 

sqrt(AMN) 0.339 0.077 0.066 0.481 

BD 0.193 0.405 0.044 0.642 

sqrt(MP) 0.269 0.092 0.052 0.412 

 

Both land use and soil order variables were highly significant (p-value< 0.001). The range in 

total variance explained by all factors (0.42 – 0.63 for all sites) was similar but somewhat 

lower than analysis by Sparling et al. (2004) of 0.50 – 0.68. Change in the range of variance 

due to land use (0.21 – 0.39 in Sparling et al. (2004), compared with 0.17 – 0.36 in this data 

set) was generally smaller than changes in variance due to the soil order (0.12 – 0.49 in 

Sparling et al. (2004)) compared with 0.06 – 0.40 in the current dataset. The soil-order factor 

was greater than the land-use factor for total C and bulk density, whereas the land-use factor 

was greater for pH, Tot N, C/N ratio, Olsen P, and macroporosity. This is similar to the 

original 500 soils analysis, with the exception of total N, which was nearly equal in land-use 

and soil-order factors in that analysis. 
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4.5 Cluster Analysis 

The objective of a cluster analysis is to use the (possibly transformed) values of the soil 

quality factors to devise a scheme for grouping the soil-order/land use combinations into 

classes so that similar combinations are in the same group. In general, the method used for 

clustering must be numerically based, and the true number of classes is not known 

beforehand. Since the number of clusters is somewhat arbitrary, this parameter must be 

specified before the analysis. There is usually some information that can guide this selection. 

For instance, the PC analysis described in Section4.3 suggests that at least five PCs are 

required to describe 90% of the total variability and only two PCs describe just under two-

thirds of the total variability. These results suggest we might need as many as five or six 

groups to cover the vast majority of the points adequately; two would probably be too few. In 

practice, we tried as few as four clusters, and in later trials we tried up to 17. Cluster sizes 

greater than 7 appeared to offer no compelling advantages. 

Using the fuzzy c-means approach also meant adopting a specific value for the fuzzification 

factor (a number greater than a value of one), which helps control the shapes of clusters and 

the manner in which points are allocated to cluster groups. We used a fuzzification factor of 

2, which was the default value for the fuzzy c-means software we used (Dimitriadou et al. 

2011), but found that larger or smaller values made very little difference to the result. 

Specifying four clusters separated out Organic Soils, while five clusters split higher C soils 

on dairy and drystock. Six clusters separated out lower C soils (primarily Recent Soils) on 

cropping, which is a useful grouping. Our preliminary analysis indicated that using more than 

six clusters did not appear to break out meaningful clusters that could be interpreted on a soil-

order or land-use basis, but this could be investigated further. Previous analysis had indicated 

that indigenous sites could be classified as largely separate from managed sites but 

indigenous sites can be quite variable (Giltrap & Hewitt 2004).It also was found that 

managed sites clustered better without indigenous sites included. Mean indicator values for 

the six cluster analysis are shown in Table 7. 

Table 7 Mean values for the six clusters selected by fuzzy c-means clustering, for the managed sites 

Cluster pH Tot C 

Mg ha
-1

 

Tot N 

Mg ha
-1

 

C/N ratio AMN 

μg cm
-3

 

Olsen P 

μg cm
-3

 

BD 

Mg m
-3

 

MP 

 % 

1 6.13 25.1 2.19 11.8 53 27.1 1.19 14.6 

2 5.90 39.0 3.22 12.6 83 19.7 1.05 13.1 

3 5.84 52.8 4.53 11.9 124 26.1 0.94 12.0 

4 5.84 67.6 5.75 12.0 144 26.9 0.88 10.4 

5 5.65 86.1 7.08 12.4 150 26.7 0.79 8.8 

6 5.72 137.0 7.67 18.2 105 28.9 0.55 9.6 

Because the SINDI soil quality dataset was not designed to be an unbiased sample of land use 

classes and soil orders, it is not possible to reach absolute conclusions about the 

characteristics of the clusters. However, the relationships suggest that clusters do have 

functional meaning. Differentiation between clusters was greatest for the organic (total C, 

total N, AMN) and physical (bulk density, macroporosity) indicator properties that are less 

directly manageable. The pH and Olsen P indicators showed little variation between clusters. 
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As with the principle components analysis, this suggests a somewhat lesser impact for pH 

and Olsen P in the current dataset than was measured in the original data set. This may 

indicate that productive land uses are being managed more carefully for Olsen P and pH 

(through nutrient and liming management programs), or it may simply reflect the (generally 

small) change in distribution of land uses or even external factors such as the price of P 

fertilisers. 

For most clusters, there were minor components of many soil orders and/or land uses present 

(Table 8). This can be explained in part by the general assumption that sites have been under 

the current land use for enough time for all properties to represent that particular land use; 

and also, in part, by the wide variation in land-use management (particularly for cropping and 

horticulture) where some specific management practices (e.g. manure or compost 

applications) would have large impacts on soil quality indicators. Specific soil orders, land 

uses or land-use/soil-order interactions, however, were generally more prominent within the 

various clusters. We make the following generalisations about clusters: 

 Cluster 1 (n=74) contained the lowest soil C values of any group. It was largely 

represented by Recent Soils on cropping and drystock and also by Gley Soils on 

cropping.  

 Cluster 2(n=168) had moderately low soil C values. It was represented most 

prominently by drystock (Brown, Pallic, Recent Soils) and cropping (most soils but 

particularly Pallic Soils).There were also significant components of Brown, Pallic, and 

Recent Soils in forestry. Soil quality values (in comparison with other groups) were 

characterised by relatively low TC and TN, moderately low AMN, and adequate BD 

and MP.  

 Cluster 3 (n=219) had moderate soil C values. Soil orders were generally similar in this 

cluster to cluster2 but land-use distribution was shifted from crop/drystock/forestry (in 

cluster 2) to dairy/drystock/forestry, though Allophanic Soils on cropping was split 

between cluster 2 and 3. Interestingly, C/N ratio was lowest in this cluster. 

 Cluster 4 (n=152) had moderately high soil C and was also represented by all land uses, 

but is dominated by dairy and dry stock on Allophanic, Ultic, Granular, and Brown 

Soils. Cluster 4 is characterised by moderately high TC and TN, high AMN, and 

adequate BD and MP.  

 Cluster 5 (n=70) contained the highest soil C values for mineral soils. It was dominated 

by dairy and drystock, on Allophanic Soils but also had a component of Brown Soils on 

dairy and drystock. The mean bulk density in this group (0.79) was less than that in 

cluster 4, also suggesting a higher Allophanic Soils component than in cluster 4. AMN 

was high, BD is relatively low, and MP is low. These levels reflect the properties of 

Allophanic soils, in which allophane or other short-range-order minerals and associated 

soil organic matter promote low bulk density. Low MP values would not normally be 

expected for Allophanic Soils, but they are commonly observed in Allophanic Soils 

under dairy use as an indication of intensive grazing by heavy animals.  

 Cluster 6 (n=11) was dominated by Organic Soils on most land uses. TC and TN are 

high in comparison with other groups as would be expected from Organic Soils, AMN 

is adequate, and BD low, which is characteristic of Organic Soils. As for cluster 5, the 

MP value is low, which is also not normally expected for Organic Soils. Again, low MP 

is common for Organic Soils under intensive dairy use with related to treading of heavy 

animals. 
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Droogers and Bouma (1997) have provided a useful conceptual framework to integrate 

inherent and dynamic soil properties. Borrowing from plant and animal ecology, they coined 

the term “genoform” for soil formed under native vegetation and “phenoform” for the 

equivalent soil with similar inherent properties but with dynamic properties modified by the 

impacts of a specific land use history. The reasoning behind this approach is that soil 

classifications and spatial soil databases that deliberately exclude dynamic soil properties are 

limited in their ability to support realistic spatial analyses of land-use issues involving 

dynamic soil properties. The clusters indicate that the land-use history of some soil orders 

may result in a similar “phenoform” that could be useful in the soil quality context. 

The grouping of soil orders shown in Table 8 was derived from similarity of the mean total C 

values (see Appendix 2). Statistics for this grouping of soils (Organic, Allophanic, 

Granular/Ultic, Pumice/Gley/Brown/Melanic, Pallic/Podzol, and Recent) are shown in 

Appendix 3. Previously, Sparling et al. (2003) had groupings based on the lower quartile of 

total C of Organic, Allophanic, Brown/Granular/Melanic/Ultic, Gley/Pallic/Podzol/Recent; 

statistics for this grouping are also shown in Appendix 2. Comparison of the variance 

components of the groups is inconclusive and does not strongly indicate which grouping 

would yield the lesser variance.  
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Table 8 Cluster membership by land use and soil order groups 

Cluster Soil Order group Crop Dairy Drystock Forestry Hort 

1 Allophanic 0 0 1 2 0 

 Granular, Ultic 3 0 0 0 0 

 Organic 0 0 0 0 0 

 Pumice, Gley, Brown, Melanic 15 0 3 4 2 

 Pallic, Podzol 9 0 0 2 2 

 Recent 14 2 9 0 4 

2 Allophanic 6 0 0 3 1 

 Granular, Ultic 7 0 0 0 1 

 Organic 0 0 0 0 0 

 Pumice, Gley, Brown, Melanic 11 9 26 22 9 

 Pallic, Podzol 15 0 12 5 4 

 Recent 4 3 13 9 8 

3 Allophanic 6 5 6 2 11 

 Granular, Ultic 1 3 5 6 4 

 Organic 0 0 0 0 0 

 Pumice, Gley, Brown, Melanic 5 38 34 15 6 

 Pallic, Podzol 4 2 18 5 8 

 Recent 3 15 8 4 3 

4 Allophanic 3 28 11 6 7 

 Granular, Ultic 0 11 11 4 0 

 Organic 1 0 0 0 1 

 Pumice, Gley, Brown, Melanic 1 17 13 11 4 

 Pallic, Podzol 1 7 2 2 1 

 Recent 1 4 2 2 1 

5 Allophanic 0 17 9 2 1 

 Granular, Ultic 0 0 4 2 0 

 Organic 0 2 0 0 0 

 Pumice, Gley, Brown, Melanic 3 10 8 4 0 

 Pallic, Podzol 1 2 1 0 0 

 Recent 1 1 0 0 2 

6 Allophanic 0 1 0 0 0 

 Granular, Ultic 0 0 0 0 0 

 Organic 1 5 1 0 1 

 Pumice, Gley, Brown, Melanic 0 1 0 1 0 

 Pallic, Podzol 0 0 0 0 0 

 Recent 0 0 0 0 0 
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5 Conclusions 

The 500 Soils approach was a pragmatic programme to develop soil quality monitoring for 

regional and national SOE reporting. The basic assumptions of the programme appear to be 

sound. Indicator means from the current dataset differ somewhat from the original data but 

measures of variance were similar. This supports the underlying assumption that the inherent 

variation in soil quality indicators could be captured in a national dataset of about 500 

samples. Additionally, the principal component analysis indicates that the general groupings 

of organic, physical, chemical, and fertility components are, to some extent, still present, but 

soil quality indicators in the principal components are more evenly distributed in the current 

dataset than in the initial 500Soils analysis. Soil-order and land-use factors are still highly 

significant factors, but the variation explained by these factors is somewhat less (about 3% 

less for land use and about 9% less for soil order) than in the initial analysis. 

Spatial autocorrelation analysis of the dataset suggests essentially no autocorrelation for 

AMN and pH, which exemplifies within paddock variation due to phenomena such as urine 

spots; medium-range autocorrelation for macroporosity and Olsen P, exemplified by farm-

scale phenomena such as fertilizer regime; and longer range autocorrelation for Total C and 

N due to environmental gradients. The autocorrelation range for C and N (about 100 km in 

this dataset) was considerably greater than results of a larger data set (McNeill 2012) of 

24.1 km, and illustrates that different datasets can be combined to increase the coverage and 

statistical robustness of measurements. Shorter distance between samples does not negate 

those sampling points, but indicates there will likely be some correlation between samples 

(e.g. they are not uncorrelated, which many statistical models assume) and this may need to 

be taken into account when statistical analyses are performed. 

Several general land use trends have emerged from regional soil quality monitoring. Dairy 

sites often have high nutrient levels and low macroporosity. Drystock sites can show 

divergent characteristics, with the more intensive sites similar to dairy whereas low intensity 

sites (i.e. marginal sites) can have relatively low nutrient and fertility values. Horticultural 

and cropping sites can have high nutrient levels, but declining C can also be a problem in 

cropping. Because of the smaller number of sites analysed for most regions, it has generally 

not been feasible to analyse soil-order/land-use combinations. Even at a national level, it has 

been acknowledged that obtaining statistically robust stratification for all land-use/soil-order 

interactions would be difficult if not impossible (Hill et al. 2003).Thus part of the uncertainty 

of the 500 Soils approach is balancing the proportions of soil orders and land uses on a 

national level with adequate statistical robustness of soil-order/land-use stratification. For 

instance, Brown Soils occupy approximately 43% of the land area on a national basis 

(Sparling et al. 2004) but compose only about 20% of the current soil quality monitoring 

sites. On the other hand, Allophanic and Recent Soils (covering about 5–6% of the land area) 

make up about 18 and 17% of soil quality sites respectively, although Allophanic Soils in 

particular are heavy utilised in managed land uses and considered among our most productive 

soils.  

Though Brown Soils are under-represented by land area, the number of sites sampled (in 

excess of 150 sites) does give statistical power in contrasting land-use effects within the soil 

order (though distribution of land uses is not balanced). Allophanic and Recent Soils also 

have reasonably high sample numbers (~150 samples for Allophanic and ~135 samples on 

Recent), yet even within these groups land use distribution varies considerably. Gley, 

Granular, Pumice, and Pallic Soils are intermediate, with 65–100 samples. Raw, Anthropic, 
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Podzol, Organic, and Melanic Soils all have less than 15 samples each, and Ultic Soils ~30 

total samples. Land areas for these soil orders are relatively low (~3% for Ultic and Raw 

Soils and 1% or less for Granular, Melanic, Organic, and Anthropic). There are no Semi-arid 

or Oxidic Soils currently in the database. It could be argued that the majority of these soils 

have little importance to managed land uses, so a decision must be made on whether to 

sample these soils of lesser coverage.  

The cluster analysis may prove useful in simplifying soil-order/land-use stratification, though 

further analysis is needed to ensure the chosen clusters are the optimal configuration (i.e. 

result in the least variance among groups). The cluster analysis suggests that soil 

“phenotypes” exist and these groupings may prove useful in the context of soil quality. For 

instance, the cropping land use on Recent and Gley Soils was predominant in cluster 1 (the 

cluster with the lowest C content), indicating these soils in particular are at risk for low soil C 

content. Clusters for managed land uses (cropping, dairy, drystock, forestry, and horticulture) 

vary primarily inorganic (Total C, total N, and AMN) and physical (bulk density, 

macroporosity) components, rather than chemical (pH) and fertility (Olsen P) measures 

though, in part, this may be due to the method of clustering. 

Regional councils have been the prime agents responsible for implementing SOE reporting; 

thus the system has been developed to address the major soil quality concerns within the 

regions, and these concerns are primarily on managed lands. While this is obviously 

advantageous for regional reporting, the lack of central leadership does have some drawbacks 

for adequate stratification of soil-order/land-use combinations. The geographical coverage of 

monitoring is an issue as spatial coverage is not uniform throughout New Zealand 

(particularly in the South Island). There is much greater density of sites in regions where soil 

quality monitoring has been most active (Auckland, Waikato, and Wellington regions, which 

when combined make up nearly half the soil quality sites).Additionally, percentage of non-

managed land uses (native forest and tussock grassland, for example) is considerably below 

the national occurrence. While the soil quality status of native sites is often not computed 

(target values are not well defined for native sites), these sites form a baseline from which to 

compare the effects of land-use management, and native site condition it its own right would 

likely form an important aspect of national soil quality reporting. Other data sets (e.g. NSD, 

CMS/soil C monitoring data) may be useful in filling some of these gaps, but scaling factors 

to compensate for the various sampling depths would need to be derived.  

6 Recommendations 

 The soil quality dataset (and soil quality results from other regions particularly 

regarding land use trends) are valuable in assisting smaller regions in planning soil 

quality programs. However, there are still gaps that need be filled. 

 Utilisation of other databases (NSD, soil carbon monitoring, LMI) are likely to be 

useful for filling gaps in land-use/soil-order interactions and spatial coverage, though 

conversion factors for various sampling depths would need to be derived. 

 Refining the cluster analysis groupings after utilising data within other databases 

(above) could potentially simplify stratification of soil-order/land-use combinations and 

therefore the sampling strategy for smaller regional councils who do not have active 

soil quality programs. 
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 Currently, soils are grouped only by soil order. For most soil orders this appears to be 

sufficient, however, Brown, Recent, and Gley Soils appear to be somewhat more 

variable than most other soils (discounting soils orders with <15 samples). Use of 

subgroup designations or linking the particular soil series to S-MAP sibling attributes 

could potentially provide greater resolution for theses soils orders in particular. 

 The ‘500 soils program’ was designed to give regions flexibility in sampling sites that 

were of greatest concern in that particular region, however, more coordination in 

selection of sites between regions would also assist in filling gaps in the land use/soil 

type stratification. The Land Management Forum (LMF) could assist in this role. 

 The goals of the ‘500 Soils’ approach to soil quality monitoring should be reviewed in 

the advent a “national SOE reporting” program is announced. There are likely to be 

differences in scale and approach. For example, additional indicators may be desired 

for national reporting and selection criteria for sites (particularly of managed land use 

sites versus indigenous sites) could differ.  
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Appendix 1 – Distribution of number of sites by soil order and land use of soil quality sites 

The table below gives the distribution of number of sites by soil type and land use 

Soil Order Dairy Drystock Forestry Crop Horticulture Indigenous Tussock Other 

 

Sum (%) 

Allophanic 60 35 15 16 20 11 

   

157 19.4 

Brown 30 43 35 10 9 20 12 

  

159 19.7 

Gley 19 14 2 19 9 2 

 

2 

 

67 8.3 

Granular 8 14 1 10 3 6 

   

42 5.2 

Melanic 

 

5 2 5 

 

1 

   

13 1.6 

Organic 7 1 0 2 2 2 

   

14 1.7 

Pallic 10 31 8 30 15 3 

   

97 12.0 

Podzol 1 2 6 

  

3 

   

12 1.5 

Pumice  26 23 18 1 3 3 

   

74 9.1 

Recent 25 32 15 23 18 17 4 1 

 

135 16.7 

Ultic 6 6 11 1 2 6 

   

32 4.0 

Raw/Anthropic 

 

3 2 

    

2 

 

7 0.9 

Sum 192 209 115 117 81 74 16 5 

 

809 100% 

(%) 23.7 25.8 14.2 14.5 10.0 9.1 2.0 0.6 

 

100% 

 
Note: The percentages in this table may not add to exactly 100%, due to rounding of figures. 
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Appendix 2 – Statistical summaries for soil quality factors, by soil order 

The tables below provide summary statistics for the eight soil quality factors, using 

transformed values where applicable. In each case, the summaries are by soil order, where the 

soil order groupings are as follows: 

 Organic  

 Allophanic 

 Granular/Ultic  (GU) 

 Pumice/Gley/Brown/Melanic  (PGBM) 

 Pallic/Podzol  (PP) 

 Recent 

Mean for soil quality indicators by soil order 

Soilorder pH Cconc Nconc log(CNratio) sqrt(AMN) log(OlsenP) BD sqrt(MP) 

Allophanic 5.89 65.1 5.70 2.46 11.33 2.88 0.745 3.40 

GU 5.75 60.9 4.58 2.60 10.84 2.94 0.943 3.39 

Organic 5.70 116.1 6.72 2.88 9.65 3.30 0.517 3.22 

PGBM 5.71 52.5 4.16 2.56 10.15 3.08 0.913 3.73 

PP 5.88 47.3 4.15 2.45 10.44 3.06 1.101 3.27 

Recent 5.96 43.4 3.55 2.51 10.07 3.30 1.127 3.40 

Standard deviations for soil quality indicators by soil order 

Soilorder pH Cconc Nconc log(CNratio) sqrt(AMN) log(OlsenP) BD sqrt(MP) 

Allophanic 0.489 16.8 1.70 0.190 2.64 1.058 0.165 1.190 

GU 0.666 16.8 1.52 0.276 3.07 1.154 0.157 0.991 

Organic 0.723 35.1 2.14 0.354 2.17 0.665 0.191 1.357 

PGBM 0.528 17.6 1.61 0.253 2.92 1.133 0.217 1.211 

PP 0.566 14.1 1.39 0.232 2.99 1.022 0.284 1.165 

Recent 0.483 16.5 1.40 0.210 2.75 1.072 0.224 1.142 

Coefficient of variation for soil quality indicators by soil order 

Soilorder pH Cconc Nconc log(CNratio) sqrt(AMN) log(OlsenP) BD sqrt(MP) 

Allophanic 0.0831 0.258 0.297 0.0773 0.233 0.367 0.221 0.350 

GU 0.1159 0.276 0.332 0.1060 0.283 0.392 0.166 0.292 

Organic 0.1267 0.302 0.318 0.1228 0.225 0.201 0.368 0.422 

PGBM 0.0925 0.335 0.388 0.0989 0.288 0.369 0.238 0.325 

PP 0.0962 0.298 0.334 0.0945 0.287 0.334 0.258 0.357 

Recent 0.0811 0.380 0.394 0.0838 0.273 0.325 0.199 0.336 
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The second group of statistics are for the following soil order groupings: 

 Allophanic 

 Brown/Granular/Melanic/Ultic (BGMU) 

 Gley/Pallic/Podzol/Recent (GPPR) 

 Organic 

Mean for soil quality indicators by soil order 

Soilorder pH Cconc Nconc log(CNratio) sqrt(AMN) log(OlsenP) BD sqrt(MP) 

Allophanic 5.89 65.1 5.70 2.46 11.33 2.88 0.745 3.40 

BGMU 5.70 55.7 4.35 2.58 10.40 2.85 0.963 3.62 

GPPR 5.93 46.7 3.94 2.48 10.36 3.30 1.088 3.29 

Organic 5.70 116.1 6.72 2.88 9.65 3.30 0.517 3.22 

Standard deviations for soil quality indicators by soil order 

Soilorder pH Cconc Nconc log(CNratio) sqrt(AMN) log(OlsenP) BD sqrt(MP) 

Allophanic 0.489 16.8 1.70 0.190 2.64 1.058 0.165 1.19 

BGMU 0.586 17.3 1.68 0.270 3.20 1.144 0.172 1.16 

GPPR 0.507 17.3 1.45 0.209 2.81 1.029 0.253 1.12 

Organic 0.723 35.1 2.14 0.354 2.17 0.665 0.191 1.36 

Coefficient of variation for soil quality indicators by soil order 

Soilorder pH Cconc Nconc log(CNratio) sqrt(AMN) log(OlsenP) BD sqrt(MP) 

Allophanic 0.0831 0.258 0.297 0.0773 0.233 0.367 0.221 0.350 

BGMU 0.1027 0.311 0.385 0.1049 0.308 0.402 0.178 0.320 

GPPR 0.0855 0.371 0.369 0.0844 0.272 0.312 0.233 0.340 

Organic 0.1267 0.302 0.318 0.1228 0.225 0.201 0.368 0.422 
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Finally, tables of the summary statistics for each individual soil orders: 

Mean for soil quality indicators by soil order 

Soilorder pH Cconc Nconc log(CNratio) sqrt(AMN) log(OlsenP) BD sqrt(MP) 

Anthropic 6.82 21.79 1.91 2.41 6.87 2.97 1.470 2.67 

Brown 5.62 53.62 4.23 2.58 10.22 2.74 0.964 3.80 

Melanic 6.38 50.04 4.42 2.43 9.98 3.58 1.061 2.86 

Gley 5.95 52.29 4.33 2.48 10.79 3.69 0.989 3.12 

Allophanic 5.89 65.15 5.70 2.46 11.33 2.88 0.745 3.40 

Pumice 5.57 51.06 3.82 2.63 9.46 3.12 0.717 4.31 

Granular 5.97 62.77 5.01 2.52 11.24 3.23 0.941 3.44 

Organic 5.70 116.11 6.72 2.88 9.65 3.30 0.517 3.22 

Pallic 5.98 47.78 4.35 2.40 10.71 3.28 1.175 3.06 

Recent 5.96 43.41 3.55 2.51 10.07 3.30 1.127 3.40 

Ultic 5.46 58.48 4.02 2.71 10.31 2.57 0.946 3.33 

Raw 5.98 8.65 0.42 3.04 1.72 2.19 1.230 6.10 

Podzol 5.11 43.21 2.54 2.85 8.20 1.23 0.498 4.92 

Standard deviations for soil quality indicators by soil order 

Soilorder pH Cconc Nconc log(CNratio) sqrt(AMN) log(OlsenP) BD sqrt(MP) 

Anthropic 1.005 9.71 0.638 0.1120 0.752 0.603 0.155 0.345 

Brown 0.500 17.39 1.767 0.2728 3.298 1.131 0.176 1.198 

Melanic 0.571 12.59 1.364 0.1527 2.743 0.982 0.182 1.114 

Gley 0.449 21.90 1.499 0.1591 2.605 0.826 0.229 0.979 

Allophanic 0.489 16.79 1.696 0.1897 2.638 1.058 0.165 1.190 

Pumice 0.493 14.38 1.392 0.2698 2.242 1.146 0.163 1.120 

Granular 0.651 19.85 1.515 0.2215 3.081 1.213 0.165 1.153 

Organic 0.723 35.09 2.139 0.3537 2.169 0.665 0.191 1.357 

Pallic 0.499 13.41 1.262 0.1814 2.998 0.773 0.194 0.965 

Recent 0.483 16.48 1.400 0.2103 2.750 1.072 0.224 1.142 

Ultic 0.575 11.56 1.354 0.3039 3.022 0.967 0.148 0.739 

Raw 0.127 1.04 0.017 0.0674 1.821 0.531 0.297 0.638 

Podzol 0.504 19.10 1.345 0.2203 1.808 0.984 0.149 1.376 
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Coefficient of variation for soil quality indicators by soil order 

Soilorder pH Cconc Nconc log(CNratio) sqrt(AMN) log(OlsenP) BD sqrt(MP) 

Anthropic 0.1473 0.446 0.3340 0.0465 0.109 0.203 0.106 0.129 

Brown 0.0891 0.324 0.4179 0.1058 0.323 0.413 0.183 0.316 

Melanic 0.0895 0.252 0.3082 0.0628 0.275 0.274 0.171 0.389 

Gley 0.0755 0.419 0.3461 0.0642 0.241 0.224 0.231 0.314 

Allophanic 0.0831 0.258 0.2973 0.0773 0.233 0.367 0.221 0.350 

Pumice 0.0884 0.282 0.3645 0.1026 0.237 0.368 0.228 0.260 

Granular 0.1090 0.316 0.3025 0.0879 0.274 0.376 0.175 0.335 

Organic 0.1267 0.302 0.3183 0.1228 0.225 0.201 0.368 0.422 

Pallic 0.0835 0.281 0.2900 0.0755 0.280 0.235 0.165 0.315 

Recent 0.0811 0.380 0.3940 0.0838 0.273 0.325 0.199 0.336 

Ultic 0.1054 0.198 0.3368 0.1121 0.293 0.376 0.157 0.222 

Raw 0.0213 0.120 0.0404 0.0221 1.059 0.243 0.241 0.105 

Podzol 0.0985 0.442 0.5301 0.0774 0.220 0.800 0.300 0.280 

 


