Review of Water Quality & Ecological Monitoring of the Taharua River

John Hayes
Joe Hay
Purpose of report:

• Review HBRC’s draft report
 – ‘Taharua River Water Quality and Instream Ecology November 01 to December 05’

• Recommend how to tailor monitoring to address potential impacts on trout arising from dairy development

• Also reviewed Bioresearches monitoring done for Poronui Stn. – since Dec 1999.
Key results from monitoring

- **Water clarity** declined over time & down Taharua
 - but not often below HBRC’s guideline of 1.6 m (black disc)
 - usually within ANZECC (2000) guidelines for turbidity (4.1 NTU)
 - SS usually within ANZECC (2000) guidelines (6 g/m³)
Key results from monitoring cont’d

• **N** increasing trend to high levels
 – but decreased down river (*dilution?*)

• **DRP** exceeds HBRC’s guideline (0.015 mg/l)
 – HBRC found no trend down river
 – Bioreseraches found P decreased down river

• **Algae** – no proliferation (*Bioreseraches*)
 – despite high N & P
Key results from monitoring cont’d

- DO spot records > 80% saturation – indicate no concern (Bioresearches)
 - but 24h DO monitoring on one occasion found DO dropped to 74% (HBRC & Cawthron)
- Faecal coliforms usually below guideline (<50/100ml)
 - but occasionally high (e.g. following rain or when cattle grazing near river – Bioresearches)
Key results from monitoring cont’d

• **MCI** – indicates good ecosystem health
Recommendations

• Plan monitoring within framework of Limiting Factor Analysis
• Limiting factors:
 – spawning / egg incubation habitat
 – fry / juvenile rearing habitat
 – adult habitat
Spawning / egg incubation habitat

- Key potential impacts:
 - **Sedimentation**
 - Smothering of eggs in redds
 - Nitrate?
 - May be lethal to trout eggs at conc. > 1.1 mg/l
 - DO?
Fry / juvenile rearing habitat

- Key potential impacts:
 - **Sedimentation**
 - embedding of substrate (no gaps to hide under rocks)
 - smothering invertebrate food
 - Riparian vegetation
 - loss of cover (e.g. by stock trampling/grazing)
 - DO?
Adult habitat

• Key potential impacts:
 – **Sedimentation**
 ➢ smothering invertebrate food
 – **Water clarity**
 ➢ reduced drift foraging area (= reduced food intake & growth)
 – Riparian vegetation
 ➢ loss of cover (e.g. by stock trampling/grazing)
 – DO?
Recommendations cont’d

• Revise water clarity guideline
 – 1.6 m BD is inadequate for drift feeding trout
 – ≥ 5 m BD or BD naturally exceeded 90% of time is more appropriate

• Continuous turbidity monitoring
Foraging geometry

\[MCD = \sqrt{RD^2 - (V \cdot RD/V_{MAX})^2} \]

Conceptual model of drift-feeding trout foraging area
Prey capture probability

Data source: Hughes, N.F., J.W. Hayes, K.A. Shearer and R.G. Young. Testing a model of drift-feeding using 3-D videography of wild brown trout in a New Zealand river. Canadian Journal of Fisheries and Aquatic Sciences. (Accepted pending satisfactory revisions).
0.5 NTU ~ 5m BD
Recommendations cont’d

- **DO** – 24h monitoring
 - regularly
 - & in concert with N interpret in context of river metabolism analysis
Recommendations cont’d

• N, P, Algae
 – extend monitoring into Mohaka River below Taharua confluence
Recommendations cont’d

• Spawning habitat & sedimentation
 – conduct spawning survey
 – check for sedimentation
 ➢ NIWA’s quorer ‘Irish Rubbish Tin’ practical monitoring tool
 – if sedimentation present could study:
 ➢ spawning gravel quality
 ➢ egg survival
Recommendations cont’d

• Riparian habitat condition survey
 – could base on existing protocols
 ➢ Bain et al (1999)
 ➢ MfE (2000)
 ➢ Quinn et al. (2001)
 – or could simply inventory obvious damage from stock & land use change
Recommendations cont’d

- Benthic invertebrates
 - consider including runs in monitoring
 - looking for progressive sedimentation effects which begin in pools → runs → riffles
Recommendations cont’d

• Monitor trout population parameters:
 – abundance & catch rate
 – growth
 – condition

• F&G – drift diving?

• Poronui Stn. – angling records
 – trout size (length & weight)
 – catch rate
 – otoliths & scales for growth analysis?
 – tag & recapture for growth analysis
 – bank counts trout & rising trout by date?