Linkages between land management activities and water quality in the Bog Burn catchment, Southland.

Ross Monaghan AgResearch, Invermay

Farming, Food and Health. First

Outline

- 1. Study process & links to farm planning initiatives
- 2. Mitigation research
 - technical fixes...
 - the BMP Toolboxenvironmental reductions & \$\$\$
- 3. Lessons learnt

Project participants

Chris Smith, Richard Muirhead, Richard McDowell, Denise Bewsell

Bob Wilcock, John Quinn, Maurice Duncan

Environment Southland

Bruce Thorrold

Lew Metcalfe, John Russell, Jim Barnett, Charlotte Rutherford

National Dairy Catchments study (all predominantly dairy) Toenepi Waiokura Inchbonnie Waikakahi **Bog Burn**

Bog Burn catchment location

The catchment management planning process

Bog Burn

Direct drainage of farm dairy effluent through mole-tile drains

(Monaghan et al. 2007 Ag. Eco. Env. 118: 211-222)

Other key land-water linkages: mole-tile drains, overland flow

Contribution to farm discharges:

Other key land-water linkages: wintering

- leaching loss of 32 kg N/t milksolids:

Why is this catchment important?

Stakeholder workshop

Farmers

Local values and information

Regional Councils

- Values from their planning processes
- Targets to protect/restore values

Scientists

- Current state of water
- Land-water linkage knowledge

Conceptual linkage model developed

Identified catchment values:

- Trout spawning & rearing in BB
- Contact recreation in Oreti R.
- Farm returns

Bog Burn Dairy Farm Plans

- riparian works more important for small stream habitat in tile drained areas
 - Stock exclusion, planting, erosion control, etc

- effluent mgmt very important for major river WQ
 - Storage, low rate application etc.

Bog Burn Dairy Farm Plans

- 1. Exclusion of cattle from streams & wetlands
 - including no stream crossings

85%: on track

- 2. Nutrient management systems are in place
 - OVERSEER runs completed
- 3. Effluent management complies with local agency requirements....

2. Mitigation research

Improved effluent management systems

- wet, fragile or artificially drained soils

Option 1: Deferred irrigation

- 1. Large storage ponds (2 3 months)
- 2. Capital cost: \$35 100 per cow
- 3. Annualised cost: \$4 11 per cow

Option 2: Advanced Pond System

- 1. 4-pond treatment & discharge
- 2. Capital cost: \$90 110 per cow
- 3. Annualised cost: \$10 20 per cow

Option 3: Low rate (K-Line) technology

- Low application rate (4 mm/hr) & improved uniformity
- High degree of control of application depth
- Intermittent pumping option
- Annualised cost: \$3 5 per cow

Option 4?: DairyYard

agresearch

- recent development
- greatly reduces wash-down water volumes
 - > smaller pond required

Option 5+?:

- in progress
- again designed to reduce pond storage reqts

Effluent systems: horses for courses

Recommended minimum effluent storage reqts: Southland

Landscape risk	Effluent applicator		
	High rate/depth i.e. travelling irrigator	Low rate/depth e.g. K line	
Low	6 weeks	4 weeks	
High	12 weeks	8 weeks	

Tackling the nitrogen problem...

Nitrification inhibitor technology

N leaching losses from DCD-treated pasture: Southland (DCn product)

agreseard

Nitrate leaching losses under restricted autumn grazing management

The BMP Toolbox

- selecting the right tool for the job

Toolbox of BMPs

- net cost
- effectiveness
- cost-effectiveness

\$40-60/cow/year

\$4/cow/year

Web-based tool:

As defined by catchment/farm values

Improved N management systems: Bog Burn dairy farms

	Cost	\$ cost per kg N conserved
	\$/cow/year	-50 0 150
Wintering shelter	73 - 13	
Optimal effluent mgmt	6	
Nitrification inhibitors	10 - 30	
Restricted aut grazing	65	
Low N feed	40	
Nil N fertiliser	73	
Dry stock farming	160 – 700	
		net benefit →

Lessons learnt

Targeted application of BMPs is important

- but will struggle to off-set dairy conversion rates...

Many environmental impacts of dairy farming are hard to see

Environmental considerations generally not a driver

- logistics & economics are

Range of options preferred

Acknowledgements

DairyNZ

Sustainable Farming Fund

New Zealand Fertiliser Manufacturers' Research Association

FRST

Ballance AgriNutrients

Environment Southland

