# Prioritisation for restoration of out-flow stream habitat of coastal wetlands on the west coast of the Manawatu-Wanganui region



A report prepared for Horizons Regional Council, May 2009

Dr Alex James and Dr Mike Joy



Foundation for Research, Science & Technology EnviroLink Contract Ref: 644-HZL

# Contents

| Executive Summary                                                 | 3  |
|-------------------------------------------------------------------|----|
| 1. Introduction                                                   | 5  |
| 1.1 Rationale and aim                                             | 5  |
| 1.2 Wetland systems in the Manawatu-Wanganui region               | 5  |
| 1.3 Coastal lakes and wetlands                                    | 6  |
| 1.4 Native fish, diadromy and in-stream barriers                  | 6  |
| 1.5 Outlet stream restoration                                     | 7  |
| 2. Methods                                                        | 8  |
| 2.1 Site selection and field procedure                            | 8  |
| 2.2 Habitat assessment                                            | 10 |
| 2.3 In-stream structure fish passage evaluation                   | 12 |
| 2.4 Restoration priority calculation                              | 12 |
| 3. Results                                                        | 18 |
| 3.1 Riparian characteristics                                      | 18 |
| 3.2 In-stream habitat characteristics                             | 19 |
| 3.3 In-stream structures                                          | 20 |
| 3.4 Weighted Environment Waikato habitat assessment score ranking | 22 |
| 3.5 Source lake/wetland quality and flow permanence score ranking | 23 |
| 3.6 Restoration priority matrix                                   | 24 |
| 3.7 Assessed outlet streams                                       | 25 |
| 4. Discussion                                                     | 67 |
| 4.1 The condition of coastal lake and wetland outlet streams      | 67 |
| 4.2 Artificial in-stream structures                               | 69 |
| 4.3 Restoration priorities                                        | 71 |
| 4.4 Other issues                                                  | 72 |
| 4.5 Further work                                                  | 73 |
| 5. Conclusions                                                    | 73 |
| Acknowledgements                                                  | 74 |
| References                                                        | 74 |
| Appendix 1 - Environment Waikato Field Assessment Cover Form      | 76 |
| - Environment Waikato Habitat Assessment Field Data Sheet         | 77 |
| Appendix 2 - In-Stream Structure Fish Passage Evaluation Sheet    | 79 |
| Appendix 3 - Field Assessment Cover Form Data                     | 81 |
| - Qualitative Habitat Assessment Scores                           | 90 |
| Appendix 4 – In-stream Structures                                 | 96 |

## **Executive Summary**

- The extensive sand dunes of the west coast of the Horizons Regional Council area contain many wetlands and lakes. A Horizons Regional Council wetland inventory has identified a number of these as being of high ecological value.
- Previous assessments have concentrated on the wetlands/lakes themselves with no consideration of the condition of their outlet streams that link them to the ocean. This linkage is important for many native fish species which must have free access to the ocean to complete their lifecycles.
- Horizons Regional Council wishes to choose some coastal lake/wetland outlet streams to undergo restoration of the riparian zone and fish passage. It is envisaged that the results of this restoration will be used to increase public awareness of the benefits of stream restoration and to promote further work in the region.
- This study investigated the current in-stream and riparian condition and severity of fish barriers in a number of coastal lake/wetland outlet streams. The aim was to select those streams that would benefit most from restoration.
- The in-stream and riparian condition of outlet streams were similar among the sites surveyed. Streams typically had a sandy substratum, no overhead shade, very sluggish water movement, were choked by macrophytes and had low habitat diversity. Riparian vegetation was usually long pasture grasses and/or exotic trees.
- A number of in-stream structures (culverts, weirs) were assessed with most of these not being barriers to fish passage. However, some structures, especially lake level weirs were identified as being barriers to the free movement of fish.

- A composite habitat quality score taking into account in-stream and riparian habitat condition, flow permanence and source lake/wetland quality was calculated to determine which outlet streams were most likely to benefit from riparian restoration. To rate the severity of fish barriers, a cumulative barrier severity score was calculated to rank the streams in terms of fish passage.
- Riparian restoration would be better targeted at the outlet streams of the higher quality source lakes/wetlands. We recommend Waiwiri Stream (Lake Papaitonga), Hokio Stream (Lake Horowhenua) and the Omanuka-Pukepuke Lagoon outlet (the section downstream of Pukepuke Lagoon only) as sites where riparian restoration would be most advantageous.
- Restoration of fish passage is likely to be most beneficial in those outlet streams that have the greatest amount of quality habitat above any potential barriers. We recommend Waiwiri Stream (Lake Papaitonga) and the Omanuka-Pukepuke Lagoon outlet (the section downstream of Pukepuke Lagoon only) as being of the highest priority for fish passage restoration. The lake level weir of Lake Horowhenua (Hokio Stream) should also be modified to allow the year-round passage of fish.
- Any restoration efforts must have realistic, defined and measurable goals. To show the effectiveness of any restoration, a monitoring scheme needs to be designed with an adequate period of pre-restoration data collection.

## **1. Introduction**

#### 1.1 Rationale and aim

Horizons completed and subsequently revised an inventory of wetland areas within the Manawatu-Wanganui region and have prioritised these wetlands based on a series of characteristics (Horizons 2005, Lambie 2008). This inventory included many coastal wetlands and lakes, but not a comprehensive assessment of their outlet streams and connectivity to the ocean. Horizons recognise that to maintain and potentially enhance the population of some key aquatic fish species (e.g. eels, inanga, giant kokopu) it is necessary to gather information on the habitat condition and potential barriers to fish movement that may be present in such outlet streams. In late 2008, Horizons Regional Council successfully obtained a FoRST Envirolink grant for the "Prioritisation for restoration of out-flow stream habitat of coastal wetlands on the west coast of the Manawatu-Wanganui Region". The aim of this report is to provide advice on how to prioritise stream habitat to maximise environmental outcomes of riparian restoration works and installation of fish passage. To ensure that restoration funds are spent in the appropriate areas with the maximum environmental benefit, this report aims to prioritise sites for restoration works and identify areas where the required restoration works are reasonably simple and have a high potential for success.

#### 1.2 Wetland systems in the Manawatu-Wanganui region

In the Manawatu-Wanganui region around 97% of the original wetland habitat has been lost since human settlement, predominantly through the development of farmland (Maseyk 2007). What remains often exists as small isolated patches in a matrix of farm and forestry land. These "wetlands" comprise a range of habitats including estuaries, lakes and swamp forest and have a number of values. The types of

5

wetland areas in the Manawatu-Wanganui region and their values are outlined in Lambie (2008). Lambie (2008) which is an update of a previous wetland inventory and prioritisation project (Horizons 2005), assigns priority to regional wetlands based on biological diversity, size, representativeness, contribution to remaining area and the presence of rare or threatened species. This inventory was focussed on the wetlands themselves and did not include an assessment of outflow streams or connections to the ocean.

#### 1.3 Coastal lakes and wetlands

The extensive sand dunes of the west coast of the Horizons region contain dozens of wetlands and lakes, many of which have been assessed as being of high priority (Horizons 2005, Lambie 2008). The condition of existing coastal lake and wetland systems is threatened by coastal land development, especially intensification of farming but also coastal subdivision in some areas. Given these systems are remnants of a once extensive habitat type; they are refuges for many wetland specialist biota (e.g. bittern, fernbird). Where these wetlands/lakes are connected to the ocean, they have the potential to be important habitat for migratory native fish such as eels, inanga and giant kokopu. Wetlands and lakes themselves have often been the focus of previous investigations, but the condition and freshwater-ocean connectivity of the outlet streams has not been specifically covered.

#### 1.4 Native fish, diadromy and in-stream barriers

About half of New Zealand's approximately 35 native fish species are diadromous meaning they must spend part of their lifecycle in the ocean. Connectivity between freshwater habitat and the ocean is vital for the persistence of such species. In-stream barriers whether natural (e.g. falls) or artificial (e.g. dams, culverts, weirs), can affect the ability of migratory species to colonise and persist in areas of otherwise suitable habitat. Diadromous fish have varying abilities to traverse in-stream structures. This is reviewed by Boubee *et al.* (1999) and discussed by James & Joy (2008).

Coastal wetland and lake outlet streams often cross farm and forestry land where there are numerous crossings, many of which involve culverts. Additionally, many coastal wetlands and lakes have outlet weirs that act to maintain water levels. These weirs have the potential to act as significant barriers to fish passage. Barriers to fish passage may not necessarily always be physical. Physicochemical water quality characteristics such as high temperature (especially in open canopy streams) and low dissolved oxygen (especially in macrophyte dominated streams) may limit the passage of some fish species at certain times of the year.

#### **1.5 Outlet stream restoration**

Many coastal wetland and lake outlet streams are relatively short. There are often only kilometres and sometimes hundreds of metres of stream between the wetland/lake and the ocean. Therefore, the restoration and protection of such streams along their complete length is logistically and financially more likely compared to streams with larger catchments. Restoration would involve fencing to prevent direct farm animal access to the stream and its banks, riparian planting that will ultimately result in a closed canopy to shade the stream and reduce macrophyte growth and the removal/alteration of any barriers to fish migration. Landowner cooperation and preferably participation is necessary to achieve meaningful restoration of such streams.

7

## 2. Methods

#### 2.1 Site selection and field procedure

A list of wetland and lake sites (Table 1) and landowner details were provided by Horizons along with high definition aerial photographs of the outlet streams. Outlet streams were followed either on foot, with a vehicle or a combination of the two depending on ease of access. Usually starting from the wetland/lake outlet and moving downstream to the ocean, habitat assessment forms were completed (see section 2.2 for detail) wherever there was a noticeable change in riparian characteristics and a fish passage evaluation sheet (see section 2.3 for detail) was completed for all in-stream structures encountered. The habitat assessment and instream structure locations were determined by GPS and by referring to features on the aerial photographs. The aerial photographs were annotated in the field to aid in determining the extent of any in-stream and riparian heterogeneity and exact positions of in-stream structures. The majority of sites were assessed between mid-December 2008 and late-January 2009. The last few sites were visited in mid-May 2009.

|                        |        | NZMS 260    |                                   |
|------------------------|--------|-------------|-----------------------------------|
| Lake/Wetland           |        | ref.        | Assessment notes                  |
| Mowhanau Steam Pond    |        | R22 769-454 | Not assessed                      |
| Omapu Stream unnamed   | ponds  | R22 767-443 | Low priority – not assessed       |
| Lake Westmere          | •      | R22 810-436 | Low priority – not assessed       |
| Lake Kohata            |        | R22 868-359 | Appears landlocked – not assessed |
| Lake Kaitoke           | Sites  | R22 877-350 | Assessed                          |
| Lake Wiritoa           | linked | R22 885-346 | Assessed                          |
| Lake Pauri             |        | R22 893-343 | Assessed                          |
| Lake Waipu             |        | S23 938-268 | Assessed                          |
| Lake Heaton            |        | S23 049-194 | Low priority – not assessed       |
| Lake Bernard           |        | S23 046-186 | Low priority – not assessed       |
| Lake Hickson           |        | S23 088-172 | Low priority – not assessed       |
| Lake Alice             |        | S23 086-165 | Low priority – not assessed       |
| Lake Kotiata           |        | S23 970-185 | Assessed                          |
| Artillerie Swamp       |        | S23 973-157 | Assessed                          |
| Knottingly Swamp       |        | S23 987-130 | Assessed                          |
| Haylock Swamp          |        | S23 092-098 | Low priority – not assessed       |
| Mt Amon/Mt Taylor Wet  | lands  | S23 031-067 | Access denied                     |
| Forest Road Wetlands   | Sites  | S23 035-034 | Assessed                          |
| Scotts Ferry Dune      | linked | S23 007-007 | Assessed as part of Forest Rd     |
| Wetlands*              |        |             | wetlands but possibly landlocked  |
| Pukepuke Lagoon        | Sites  | S24 024-935 | Assessed                          |
| Omanuka Lagoon         | linked | S24 075-950 | Assessed                          |
| Pukemarama Lagoon      |        | S24 074-985 | Assessed                          |
| Lake Kaikokopu         |        | S24 022-898 | Assessed except upper ~200m       |
| Lake Koputara          |        | S24 020-872 | Assessed                          |
| Oruakaitawa Lagoon     | 1      | S24 014-837 | Landlocked – not assessed         |
| Koputara Lakes 1 and 2 |        | S24 013-844 | Assessed                          |
| Koputara Lake 3        | Sites  | S24 009-823 | Assessed                          |
| Lake Omanu             | linked | S24 009-815 | Assessed                          |
| Round Bush**           |        | S24 038-824 | Not assessed                      |
| Lake Horowhenua        |        | S25 998-635 | Assessed                          |
| Lake Papaitonga        |        | S25 982-600 | Assessed                          |
| Ohau Loop              |        | S25 964-584 | Assessed                          |
| Te Hakari Wetlands     |        | S25 928-577 | Assessed                          |
| Ohau River Dune Lakes  |        | S25 926-568 | Assessed                          |

**Table 1.** The list of coastal lake and wetland sites provided by Horizons Regional

 Council for outlet stream assessment

\* The Scotts Ferry Dune Wetland appeared to be landlocked.

\*\* I was informed that Round Bush was landlocked but subsequently learned from DOC that it does have an outlet with a weir. However, Round Bush has a significant population of mudfish thus DOC would not allow any alteration of this weir that may allow predatory fish easy access or change water levels (pers. com. Logan Brown, DOC).

#### 2.2 Habitat assessment

In-stream and riparian characteristics were assessed using the Qualitative Habitat Assessment Procedure developed by Environment Waikato (Collier & Kelly 2005). This procedure is derived from the revised USEPA Rapid Bioassessment Protocol and modified to suit local stream conditions. To assess stream habitat, the observer estimates the condition of each characteristic over at least a 100 m reach. Two data sheets are completed at each site, a Field Assessment Cover Form and a Habitat Assessment Field Data Sheet (Appendix 1).

The Field Assessment Cover Form describes general watershed and in-stream characteristics. Collier & Kelly (2005) give full details on what is included in this form. This procedure is intended to be used at sites where macroinvertebrate sampling is undertaken and this form includes sampling details. For the purposes of this report where no such invertebrate sampling was performed, the sampling information parts of the form were not used. Spot measures of water quality (i.e. temperature, dissolved oxygen, conductivity) were not taken since such one-off measures provide little useful information on habitat condition.

The second form to be completed at each site is the Habitat Assessment Field Data Sheet. It comes in two variants, one for hard-bottomed and another for softbottomed streams. In this survey the majority of habitat assessment sites required the use of the soft-bottomed stream form. This form involves nine in-stream and riparian characteristics that the observer rates from optimal to poor on a 20 point scale (Table 2, Collier & Kelly 2005). These are then summed to derive an overall score for the assessed site. The maximum possible score indicating optimal habitat is 180 while the minimum possible score indicating poor habitat is 18. For the purposes of this report where we are concerned with the entire length of the outlet streams, the total score for each habitat assessment have been averaged to give an overall outlet stream value.

10

| Characteristic                        | Assesses                                                                                                                       | Importance                                                                                                                                                                                                    |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Riparian vegetative<br>zone width  | Assesses the extent of natural vegetation from the edge of the stream bank out through the riparian zone.                      | The vegetative zone is a buffer to<br>pollutants entering a stream from<br>runoff, controls erosion, provides<br>habitat and organic matter input<br>and provides shade. Generally, the<br>wider, the better. |
| 2. Vegetative Protection              | Evaluates the amount and type<br>of vegetative protection present<br>on the bank and near-stream<br>part of the riparian zone. | The root systems of plants<br>growing on stream banks help<br>hold soil in place and reduce the<br>potential for bank erosion.                                                                                |
| 3. Bank stability                     | Assesses the erosion or potential erosion of stream banks.                                                                     | Eroded banks indicate a problem<br>of sediment movement and<br>deposition.                                                                                                                                    |
| 4. Channel sinuosity                  | Measures the meanders/bends of the channel.                                                                                    | A high degree of sinuosity creates<br>a more diverse habitat. The<br>absorption of energy by bends<br>prevents erosion, flooding and<br>provides refugia for stream fauna<br>during high flow events.         |
| 5. Channel alteration                 | A measure of large-scale<br>changes in the shape of the<br>stream channel.                                                     | Many streams have been<br>straightened, deepened and<br>channelized. Such streams have<br>reduced habitat heterogeneity.                                                                                      |
| 6. Sediment deposition                | Measures sediment<br>accumulation and changes to<br>the stream bottom resulting<br>from deposition.                            | Sediment deposition results from<br>the large-scale movement of<br>sediment. High levels of<br>deposition are symptomatic of an<br>unstable habitat that may be<br>unsuitable for many organisms.             |
| 7. Pool variability                   | Assesses the overall mixture of<br>pool types generally found in<br>soft-bottomed streams<br>according to size and depth.      | A stream with many pool types<br>will support a more diverse<br>community of aquatic species that<br>one with a single pool type.                                                                             |
| 8. Abundance and diversity of habitat | Assesses the relative quantity<br>and variety of natural in-stream<br>features.                                                | The more diverse the range of<br>microhabitats (e.g. cobble, large<br>rocks, logs, branches, leaf packs)<br>the greater the diversity of aquatic<br>organisms.                                                |
| 9. Periphyton growth                  | Assesses the presence/absence<br>of periphyton growth on the<br>stream bed.                                                    | Lower algal biomass is preferable<br>to high levels which can smoothe<br>the stream bed.                                                                                                                      |

**Table 2.** The nine in-stream and riparian characteristics included on the Habitat Assessment Field Data Sheet. (Adapted from Collier & Kelly, 2005).

#### 2.3 In-stream structure fish passage evaluation

When an artificial in-stream structure was encountered, the same record sheet as used by James & Joy (2008) was completed (Appendix 2). This form was originally adapted from that used by Environment Waikato (2007). A 3 m extendable surveyor's staff was used to make a series of measurements including length, width, water depth, undercut length, and perch height where applicable. A digital camera was used to take inlet and outlet photos. On site, structures were assigned to one of four categories following Environment Waikato (2001):

- None/minimal, where the structure poses no significant barrier to the upstream or downstream passage of fish likely to be found in the stream under normal flow conditions.
- Low flow, where the structure is a significant barrier to fish passage, but only during periods of low flows (e.g. very shallow water depth through structure).
- **High flow**, where the structure is a significant barrier to fish passage, but only during periods of high flow (e.g. velocity barrier forms at high flows).
- Most flow, where the structure is a significant barrier to fish passage during most flow conditions.

#### 2.4 Restoration priority calculation

To calculate the relative restoration priority of assessed outlet streams, a matrix style approach was employed. This involved a cumulative barrier severity score plotted against a composite habitat quality score.

#### Cumulative barrier severity score

Each in-stream structure was given a severity score based on the barrier category to which it was assigned (Table 3).

| Barrier category | Severity score |
|------------------|----------------|
| None/minimal     | 0              |
| Low flows        | 2.5            |
| High flows       | 2.5            |
| Most flows       | 5              |

 Table 3. The expression of barrier categories as severity scores.

For a given stream, the severity scores of all structures were summed to give a cumulative severity score for that stream. For example, a stream may have five structures along it, three identified as 'none/minimal', one as 'low flows' and one as 'most flows'. Such a stream would have a cumulative barrier severity score of 7.5. This score separates outlet streams based on how in-stream structures influence fish passage from the ocean to the source lake/wetland.

#### Composite habitat quality score

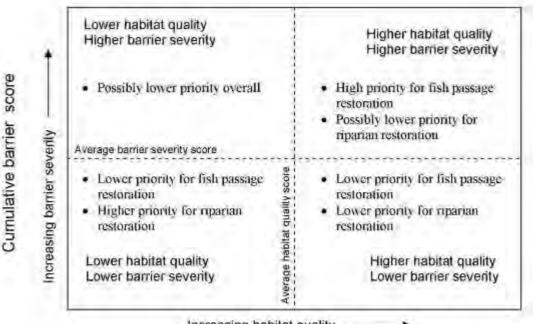
The habitat quality score is based on the Environment Waikato (EW) habitat assessment scores with the addition of two other factors, the quality of the source lake/wetland and flow permanence. This composite habitat quality score has a theoretical maximum of 139. The EW habitat assessment score is based on nine factors and not all of these were deemed to be of the same importance when prioritising habitat quality in coastal outlet streams. Thus these scores were weighted to reduce the importance of some factors (Table 4).

| Factor                                  | Weighting | Restoration<br>priority score<br>(maximum) | Rationale                                                                                                         |
|-----------------------------------------|-----------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1. Riparian<br>vegetative zone<br>width | 0.5       | 10                                         | Important as it indicates width of<br>buffer between stream and<br>surrounding land use                           |
| 2. Vegetative protection                | 0.5       | 10                                         | Important as the existing type of<br>riparian vegetation has an effect on in-<br>stream habitat quality           |
| 3. Bank stability                       | 0.25      | 5                                          | Not so important in low gradient<br>streams that do not receive highly<br>erosive flow events                     |
| 4. Channel sinuosity                    | 0.25      | 5                                          | Not so important in creating different<br>flow environments in low velocity<br>streams                            |
| 5. Channel alteration                   | 0.25      | 5                                          | Difficult to determine and not relevant<br>in deciding restoration priority                                       |
| 6. Sediment deposition                  | 0.1       | 2                                          | Difficult to determine visually in overgrown, sand substrate streams                                              |
| 7. Pool variability                     | 1         | 20                                         | Very important as it measures one aspect of habitat diversity                                                     |
| 8. Abundance and diversity of habitat   | 1         | 20                                         | Very important as the more habitats<br>will support a greater diversity of<br>species                             |
| 9. Periphyton growth                    | 0.1       | 2                                          | Not a large issue in streams overgrown<br>by macrophytes and not important in<br>determining restoration priority |

**Table 4.** The weightings applied to Environment Waikato habitat assessment scores and the rationale for doing so.

The quality of the source lake or wetland was determined from the regional wetland inventory project conducted by Horizons Regional Council (Horizons 2005, Lambie 2008). This project scored wetlands on a scale of 1 (poorest and least important wetlands) to 5 (richest and most important wetlands) taking into account size, the rarity of that wetland type, the size contribution it makes to what remains of that type and diversity. The raw scores from this scheme were converted to categories that match the scale of the EW habitat assessment scores (Table 5). The quality of the source lake or wetland was deemed to be as important as the combination of the two habitat diversity factors ('pool variability' and 'abundance and diversity of habitat')

from the EW habitat assessment score. Thus a high quality source lake or wetland scores the same as the theoretical maximum available for these two factors.


| г                 | as a component of the restoration priority habitat quality scor |                                   |
|-------------------|-----------------------------------------------------------------|-----------------------------------|
| Horizons' wetland |                                                                 | <b>Restoration priority score</b> |
|                   | inventory score                                                 | Restoration priority score        |
|                   | 1 – 1.99                                                        | 10                                |
|                   | 2 - 2.99                                                        | 20                                |
|                   | 3 - 3.99                                                        | 30                                |
|                   | 4 - 5                                                           | 40                                |

**Table 5.** The expression of Horizons' wetland inventory scores as a component of the restoration priority habitat quality score.

Some coastal lake or wetland streams are not permanently flowing and it was decided that permanently flowing streams should have a higher priority than those that flow intermittently or ephemerally. Permanent streams scored 20 while those that do not flow year-round scored 10.

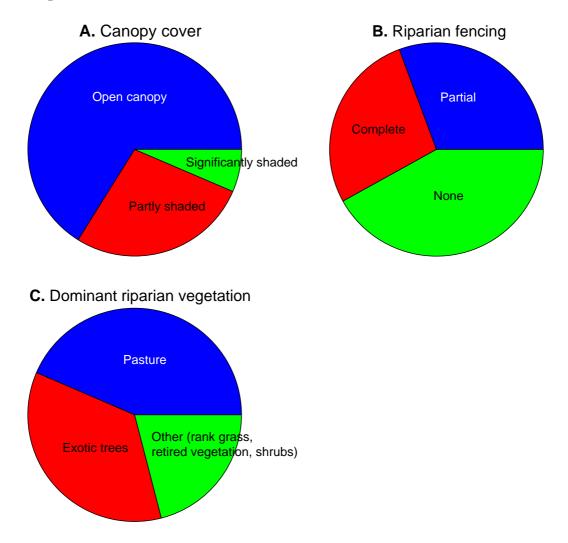
#### The restoration priority matrix

The composite habitat quality score (x-axis) is plotted against the cumulative fish barrier score (y-axis). The averages of each score calculated from all the assessed streams, were used to split the sites into four groups (Figure 1).



Increasing habitat quality -

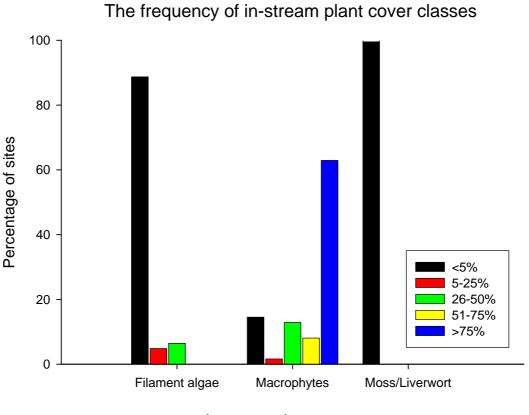
Composite habitat quality score


**Figure 1.** The restoration priority score matrix to assist in deciding the priority of outlet streams for fish passage and riparian restoration.

Streams that plot in the upper right quadrant are those that tend to have both higher relative habitat quality and barrier severity. These are the streams that are of the highest priority for the restoration of fish passage and may benefit from riparian restoration work. Sites that plot in the upper left have lower habitat quality and higher barrier severity and are streams that are of lower priority for any restoration. Streams plotting in the lower right have higher habitat quality and lower barrier severity. These sites may not require restoration work. The streams plotting in the lower left quadrant have lower habitat quality and barrier severity and may benefit from riparian restoration especially.

This matrix is intended to be a guide to prioritising streams for restoration; however, the final decision is always going to involve other considerations such as budget limitations, ease of access, landowner cooperation, politics and the presence of pest species. To aid in determining the final restoration sites it is useful to also rank the streams according to each of the more important factors. This will act to separate the different elements of the composite habitat quality score (e.g. in-stream habitat quality from source lake/wetland quality). While it is relatively straightforward to decide the highest priority streams for the restoration of fish passage, deciding where to target riparian restoration is more difficult given the overall homogeneity of instream and riparian habitat that was encountered. It must also be noted that because of this habitat homogeneity, the differences between high and low habitat quality are relatively small even though streams might be separated on the matrix.

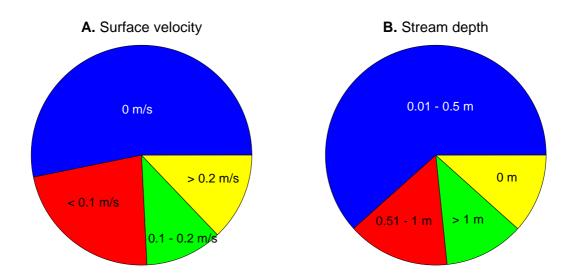
# **3. Results**


## **3.1 Riparian characteristics**



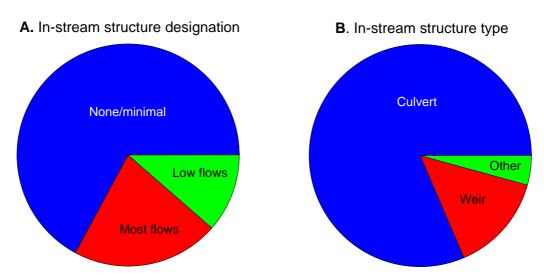
**Figure 2.** A proportional summary of the riparian characteristics of surveyed coastal lake and wetland outlet streams.

Two thirds of assessed sites were unshaded by riparian vegetation (Fig. 2A). Greater than a third of sites had no riparian fencing (Fig. 2B). Riparian vegetation was dominated by pasture and exotic trees (Fig. 2C). No sites with predominantly native vegetation were encountered.


## 3.2 In-stream habitat characteristics



In-stream plant cover


**Figure 3.** The frequency of in-stream plant cover classes of surveyed coastal lake and wetland outlet streams.

Almost 90% of sites have less than 5% cover of filamentous algae, while moss/liverwort cover was less than 5% at all sites surveyed. Macrophytes dominated in-stream plant cover with two-thirds of sites having macrophyte cover greater than 75% (Fig. 3).



**Figure 4.** A proportional summary of surface water velocity and water depth of surveyed coastal lake and wetland outlet streams.

There was no visible surface water movement at over half the sites and where there was water movement, it was usually sluggish (Fig. 4A). Water depths were usually no more than 0.5 m and about 10% of sites lacked any surface water (Fig. 4B).



**3.3 In-stream structures** 

**Figure 5.** A proportional summary of the fish barrier potential and type of in-stream structures encountered in the surveyed coastal lake and wetland outlet streams.

Most in-stream structures posed no problem for fish passage (Fig. 5A). Culverts were the most common structure encountered (Fig. 5B). Of the structures identified as barriers, around half were culverts and half weirs (Table 6).

| Source lake or wetland              | Barrier type                                                                                                                     | <b>Details/Severity</b>                                           |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Lake Kaitoke                        | Lake level weir: concrete and wood                                                                                               | Perched/Most flows                                                |
| Lake Wiritoa                        | Weir: Steel with wooden top<br>Culvert: Steel pipe                                                                               | Perched/Most flows<br>Perched/Most flows                          |
| Lake Waipu                          | Culvert: Plastic pipe<br>Drop created by vehicle<br>crossing earthworks                                                          | Perched/Most flows<br>Perched/Most flows                          |
| Lake Koitiata                       | Culvert: concrete pipe<br>Culvert: concrete pipe<br>Culvert: concrete pipe (double)                                              | Perched/Most flows<br>Perched/Most flows<br>Perched/Most flows    |
| Artillerie Swamp                    | Natural fall                                                                                                                     | Perched/Most flows                                                |
| Forest Rd Wetlands                  | Culvert: concrete pipe with floodgate                                                                                            | Floodgate/Low flows                                               |
| Pukepuke Lagoon                     | Lake level weir: concrete (has<br>newly installed fish ramp)<br>Old lake level weir: concrete<br>Culvert: concrete pipe (double) | Perched/Low flows<br>Perched/Most flows<br>Snapped pipe/Low flows |
| Lake Kaikokopu                      | Weir: wooden                                                                                                                     | Perched/Most flows                                                |
| Lake Koputara                       | Lake level weir: concrete                                                                                                        | Perched/Low flows                                                 |
| Lake Koputara 1,2,3 &<br>Lake Omanu | Koputara 2 lake level weir: concrete                                                                                             | Perched/Low flows                                                 |
|                                     | Culvert: corrugated iron                                                                                                         | Flat/Low flows                                                    |
| Lake Horowhenua                     | Lake level weir: concrete?                                                                                                       | Submerged/Low flows                                               |
| Lake Papaitonga                     | Lake level weir: concrete?                                                                                                       | Perched/Most flows                                                |
|                                     | Culvert: concrete pipe                                                                                                           | Flat/Low flows                                                    |
| Te Hakari Wetlands                  | Lake level weir: concrete?                                                                                                       | Perched/Most flows                                                |
| Ohau Dune Lakes                     | Culvert: concrete pipe with cap                                                                                                  | Cap submerged/Most flows                                          |
| Ohau Loop                           | Culvert: concrete pipe with floodgate                                                                                            | Floodgate/Low flows                                               |

**Table 6.** Summary of the barriers identified in the assessed coastal lake and wetland outlet streams.

#### 3.4 Weighted Environment Waikato habitat assessment score ranking

The Environment Waikato habitat assessment score component of the composite

habitat quality score is a good representation of in-stream habitat quality. Ranking

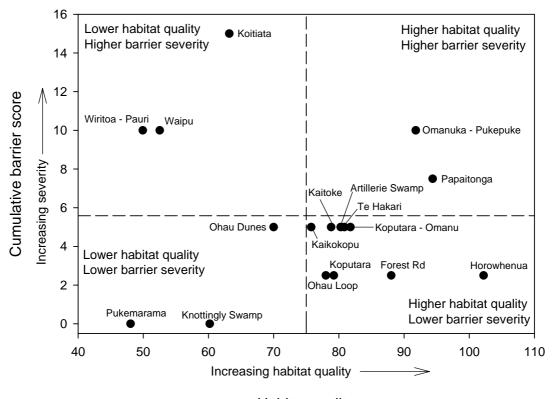
sites using this score gives an indication of the relative condition of in-stream habitat

among the assessed sites.

| Table 7. Assessed outlet streams ranked with the weighted Environment Waikato |  |
|-------------------------------------------------------------------------------|--|
| habitat assessment scores                                                     |  |

|                                          | Weighted Environment       |
|------------------------------------------|----------------------------|
| Ranked source lake and wetlands          | Waikato habitat assessment |
|                                          | score                      |
| 1. Lake Horowhenua                       | 42.19                      |
| 2. Te Hakari                             | 41.78                      |
| 3. Artillerie Swamp                      | 40.28                      |
| 4. Forest Rd                             | 38.03                      |
| 5. Ohau Loop                             | 38.00                      |
| 6. Lake Kaikokopu                        | 35.74                      |
| 7. Lake Papaitonga                       | 34.38                      |
| 8. Lake Koitiata                         | 33.19                      |
| 9. Omanuka – Pukepuke Lagoon             | 31.79                      |
| 10. Lake Koputara 1, 2, 3 and Lake Omanu | 30.83                      |
| 11. Knottingly Swamp                     | 30.20                      |
| 12. Ohau Dune Lakes                      | 30.00                      |
| 13. Lake Koputara                        | 29.23                      |
| 14. Lake Kaitoke                         | 28.82                      |
| 15. Pukemarama Lagoon                    | 28.05                      |
| 16. Lake Waipu                           | 22.53                      |
| 17. Lake Wiritoa and Lake Pauri          | 19.93                      |
| Theoretical maximum score                | 79                         |

Given the theoretical maximum score of 79, all the outlet streams scored poorly. Only a few sites scored more than half of this maximum and then by only a few points (Table 7). The lack of habitat diversity and overall homogeneity of the outlet streams means none of them are of particularly high quality.


#### 3.5 Source lake or wetland quality and flow permanence score ranking

| <b>Table 8.</b> Assessed outlet streams ranked with the source lake/wetland quality and |
|-----------------------------------------------------------------------------------------|
| flow permanence score.                                                                  |

| Ranked source lake and wetlands          | Lake or wetland quality/flow |
|------------------------------------------|------------------------------|
| Kankeu source lake and wettands          | permanence score             |
| 1=. Lake Horowhenua                      | 60                           |
| 1=. Lake Papaitonga                      | 60                           |
| 1=. Omanuka – Pukepuke Lagoon            | 60                           |
| 4=. Forest Rd                            | 50                           |
| 4=. Lake Koputara 1, 2, 3 and Lake Omanu | 50                           |
| 4=. Lake Koputara                        | 50                           |
| 4=. Lake Kaitoke                         | 50                           |
| 8=. Ohau Loop                            | 40                           |
| 8=. Te Hakari                            | 40                           |
| 8=. Artillerie Swamp                     | 40                           |
| 8=. Lake Kaikokopu                       | 40                           |
| 8=. Ohau Dune Lakes                      | 40                           |
| 13=. Knottingly Swamp                    | 30                           |
| 13=. Lake Koitiata                       | 30                           |
| 13=. Lake Wiritoa and Lake Pauri         | 30                           |
| 13=. Lake Waipu                          | 30                           |
| 17. Pukemarama Lagoon                    | 20                           |
| Theoretical maximum score                | 60                           |

Lake Horowhenua, Lake Papaitonga and Omanuka – Pukepuke Lagoon ranked first equal, scoring the maximum. Knottingly Swamp, Lake Koitiata, Lake Wiritoa – Lake Pauri, Lake Waipu and Pukemarama Lagoon scored the least with a number of these having predominantly dry outlet channels (Table 8).

#### **3.6 Restoration priority matrix**



Habitat quality score

**Figure 6.** Restoration priority matrix showing the relative positions of assessed coastal lake and wetland outlet streams.

Most outlet streams had few barriers to fish passage with Pukemarama and Knottingly Swamp not having any barriers identified. Lake Koitiata, Omanuka – Pukepuke Lagoon, Lakes Wiritoa – Pauri, Lake Waipu and Lake Papaitonga had the highest barrier severity scores (Fig. 6). The outlet streams with the lowest composite habitat quality score, Lake Koitiata, Pukemarama, Knottingly Swamp, Lakes Wiritoa – Pauri and Lake Waipu all lacked continuous flow from the source to the ocean at the time of assessment. The outlet of Lake Horowhenua, Hokio Stream had the highest habitat quality score and was the only stream with a reach of hard-bottomed, swift flowing riffle habitat. The next highest habitat quality scores were from outlet streams that drain arguably the most intact source lakes/wetlands in the region, Lake Papaitonga and Pukepuke Lagoon (Figure 6).

## **3.7** Assessed outlet streams

A summary of each lake or wetland outlet stream was produced. The summary includes details of stream length, canopy cover, fencing, substrate size, the number of habitat assessments performed, and the number of in-stream barriers assessed. A written description of the outlet stream is provided as are relevant photos. Full detailed data are included in Appendix 3. A detailed summary page for in-stream structures has been provided only for those that are potential barriers to fish movement. Details of all in-stream structures are given in Appendix 4.

# **Artillerie Swamp**

#### **Artillerie Swamp**

NZMS 260: S23 973-157

Outlet stream length: 1.70 km

Date assessed: 29/1/09

Canopy cover: mainly open

Fencing: none

Substrate: 100% sand

**Riparian vegetation:** near the stream are assorted shrubs, long grass, reeds and wild parsnip with occasional patches of small trees. Further back is production pine forest of various ages.

**General description:** The lake and stream are entirely within Santoft Forest.

**Lake to 450 m:** Choked with predominantly raupo and some wild parsnip. Natural perched drop located.

**450 m to1<sup>st</sup> culvert:** shaded under exotic trees and the channel clear of macrophytes. Covered in iron floc. Inanga sighted.

1<sup>st</sup> culvert to estuary: Dense macrophytes mainly wild parsnip with raupo patches. A few areas of open water and deeper pools where channel is shaded.

**Estuary:** Woody debris and numerous inanga. Not connected to ocean at time of visit.

Habitat assessments completed: 2

Instream structure assessments completed: 2

Potential problem instream structures: 1

**Composite habitat quality score:** 80.28

Cumulative barrier severity score: 5









Top: The Artillerie Swamp lake.

Middle: Extensive iron floc deposits ~450 m from lake in heavily shaded reach.

Bottom: The channel choked with wild parsnip. This is typical of most of the stream.

Left: The Artillerie Swamp outlet stream estuary.

# Artillerie Swamp structure Location: natural fall near lake outlet

| Easting                                 | 2696865                         |
|-----------------------------------------|---------------------------------|
| Northing                                | 6115900                         |
| Date assessed                           | 29/1/09                         |
| Structure                               | Natural fall                    |
| Туре                                    | Natural fall                    |
| Construction<br>Width                   | Sand and<br>vegetation<br>0.5 m |
| Water depth (inlet)                     | 0.03 m                          |
| Water depth (outlet)                    | 0.4 m                           |
| Inlet cross section                     | flat                            |
| Outlet cross section                    | perched                         |
| If perched (height)                     | 0.25 m                          |
| If perched (undercut)                   | 0                               |
| Likely severity of<br>barrier           | Most flows                      |
| Instream structures<br>known upstream   | 0                               |
| Instream structures<br>known downstream | 1                               |
|                                         |                                 |



Above: A natural perched fall near the Artillerie Swamp lake. It may become submerged when water levels are high.

Below: This feature was only discovered amongst the raupo by the sound of running water.



# **Forest Road Wetlands**

## **Forest Road Wetlands**

NZMS 260: S23 035-034

Outlet stream length: 4 km

Date assessed: 22/1/09

Canopy cover: mainly open

Fencing: mostly complete

Substrate: 100% sand

**Riparian vegetation:** The majority of the outlet stream has rank grass, some small shrubs, and patches of blackberry on the banks. Near the outlet from the wetlands there are willows on one side and the stream is adjacent to plantation pine forest one side for some distance.

**General description:** The outlet begins on a pig farm where the dominant land use is the growing of fodder crops. Most of this land was growing maize at the time of visit. After about 1 km it enters a dairy farm through which it is fully fenced. The stream flows into the Rangitikei River through a floodgate structure beneath the stop bank near the entrance to the Scotts Ferry settlement.

Adjacent to the final reach of the Forest Rd Wetland outlet before it enters the Rangitikei River is the Scotts Ferry Wetland. This appeared to be landlocked with no outlet.

Habitat assessments completed: 5

Instream structure assessments completed: 10 Potential problem instream structures: 1

**Composite habitat quality score:** 88.03

Cumulative barrier severity score: 2.5

Top: Wild parsnip choking the channel near the start of the outlet stream.

Middle: The stream near the entry to dairy farm. Here there is abundant duckweed and orange gunk.

Bottom: Typical nature of the channel through the dairy farm. Much of the channel is totally obscured by rampant wild parsnip growth.







## Forest Road Wetland outlet stream selected structures



Top left: Relatively new culvert installed on top of two older ones to add higher flow capacity.

Middle left: A large diameter culvert.

Bottom left: Entrance to floodgate culvert beneath stop bank.

Top right: A number of the culverts were totally obscured by rampant wild parsnip.

Middle right: The stream channel is deeply incised in places. Here the bottom is almost 2 metres below the top of the bridge.

Bottom right: The floodgate. It appears closed but was hanging open at the time of visit.

# Lake Horowhenua

## Lake Horowhenua - Hokio Stream

NZMS 260: S25 998-635

**Outlet stream length:** ~ 8 km

**Date assessed:** 16/12/08

Canopy cover: some partial shade, some open

**Fencing:** some complete, some one side and a smaller distance unfenced

**Substrate:** 100% sand except cobbled reach just downstream of Moutere Rd bridge

**Riparian vegetation:** Variable along Hokio Stream but predominantly a mixture of rank grass, toitoi, flax, various shrubs and trees with some willow patches. In some places the vegetation is impenetrable (e.g. much of the reach that flows next to Hokio Beach Rd).

**General description:** The Hokio Stream for most of its length is not wadeable often being great than one metre deep. Much of the bed is covered in macrophytes, especially *Potamogeton* spp. Approximately 800 metres downstream from Lake Horowhenua the Hokio Stream enters a small canyon where there is a hard substrate cobbled reach with riffle habitat. This hard material originates from a fault line at this point (N. Procter, *pers. com.*). For most of its length, the water velocity is sluggish but there are some areas of faster flows.

Habitat assessments completed: 5 Instream structure assessments completed: 1 Potential problem instream structures: 0 Composite habitat quality score: 102.19 Cumulative barrier severity score: 2.5







Top: Lake Horowhenua outlet. Middle: Hokio Stream just downstream from Lake. Bottom: Cobbled riffle downstream of Moutere Rd bridge. Left: Hokio Stream near entrance to Hokio Beach settlement.

## Lake Horowhenua structure

Location: Lake level weir at outlet

| Easting                               | 2699250   |
|---------------------------------------|-----------|
| Northing                              | 6064335   |
| Date assessed                         | 16/12/08  |
| Structure                             | Weir      |
| Туре                                  | Weir      |
| Construction                          | Concrete  |
| Width                                 | ~ 20 m    |
| Water depth (inlet)                   | > 1 m     |
| Water depth (outlet)                  | > 1 m     |
| Inlet cross section                   | Pooled    |
| Outlet cross section                  | Pooled    |
| If perched (height)                   | 0 m       |
| If perched (undercut)                 | 0 m       |
| Likely severity of<br>barrier         | Low flows |
| Instream structures                   | 0         |
| known upstream<br>Instream structures | 0         |
| known downstream                      |           |



Top right: The Lake Horowhenua water level weir was underwater at the time of assessment.

Bottom right: All that could be seen of the weir were some concrete posts.



# Lake Kaikokopu

#### Lake Kaikokopu

NZMS 260: S24 022-898

Outlet stream length: 3 km

Date assessed: 16/1/09

Canopy cover: some partial shade, some open

Fencing: some complete, some one side

Substrate: 100% sand

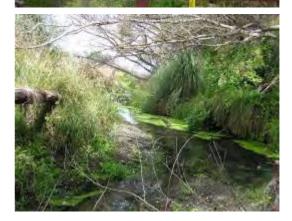
**Riparian vegetation:** For much of its length, the outlet stream banks are covered in rank grass, and small shrubs. It flows through an area of pine plantation as it exits the Pedersen farm and there are some riparian trees on one side as it flows past the Himatangi Beach settlement.

General description: The first ~200 m including the lake outlet weir in inaccessible because of landowner concerns. This sections flows through a dairy farm and then enters an 800 m reach through pine plantation. The remainder flows parallel to the road before going along the northern edge of the Himatangi Beach settlement and entering the sea. At the entrance to the settlement there is a significant weir structure. Kaikokopu Stream is relatively shallow for much of its length (>0.5 m). It generally has slow water velocities and high proportion of open water. Duckweed is present at the edges and there are some dense beds of macrophytes. In places there are patches of bare sand and growths of filamentous green algae.

Habitat assessments completed: 4

Instream structure assessments completed: 1

Potential problem instream structures: 1


Composite habitat quality score: 75.74

Cumulative barrier severity score: 5









Top: Kaikokopu Stream at Pedersen boundary. Middle: Kaikokopu Stream at exit from pine plantation. Bottom: Kaikokopu Stream at Manawatu District Council reserve. Left: Kaikokopu Stream estuary.

| Kaikokopu Stream structure                       |                   |  |
|--------------------------------------------------|-------------------|--|
| Location: weir at entrance to                    |                   |  |
| Himatangi Beach                                  |                   |  |
| Easting                                          | 2700435           |  |
| Northing                                         | 6090410           |  |
| Date assessed                                    | 16/1/09           |  |
| Structure                                        | Weir              |  |
| Туре                                             | Weir              |  |
| Construction                                     | Wood              |  |
| Width                                            | 5.3 m             |  |
| Water depth (inlet)                              | 0.43 m            |  |
| Water depth (outlet)                             | 0.07 m            |  |
| Inlet cross section                              | Pooled            |  |
| Outlet cross section                             | Perched           |  |
| If perched (height)                              | $0.25 - 0.67 \ m$ |  |
| If perched (undercut)                            | 0                 |  |
| Likely severity of                               | Most flows        |  |
| barrier<br>Instream structures<br>known upstream | 1                 |  |
| Instream structures<br>known downstream          | 0                 |  |







Top, bottom and left: The weir structure in the Kaikokopu Stream adjacent to the entrance to Himatangi Beach. A large amount of concrete rubble has been dumped at outlet presumably to prevent scouring of the stream bed.

# Lake Kaitoke

## Lake Kaitoke - Kaitoke Stream

NZMS 260: R22 868-359

Outlet stream length: 5 km

Date assessed: 15/5/09

**Canopy cover:** mostly open of partially shaded, some more shaded reaches in pine forest **Fencing:** mostly none, some fencing in pine forest.

Substrate: 100% sand

**Riparian vegetation:** The first 200m downstream of the lake is pasture and then the stream skirts pine forest. In a few places it enters the forest and has trees on both banks. One reach exits the forest and has dense gorse on the banks before entering the forest again. The final ~2.5 km flows through scrubby pasture with patches of lupin and gorse.

**General description:** Kaitoke Stream appears to flow permanently and exits the lake over a weir. There is visible water movement along most of the stream and in a few places it is swift. Most of the stream has open water and not choked by macrophytes. The channel meanders a lot and recent erosion is evident in a few places. As it nears the sea, the channel skirts the end of Wanganui airport. About 300 m from the ocean the Lakes Wiritoa – Pauri outlet joins the Kaitoke Stream.

Habitat assessments completed: 5

Instream structure assessments completed: 1

Potential problem instream structures: 1

Composite habitat quality score: 78.82

Cumulative barrier severity score: 5





Top: The Kaitoke Stream just downstream of the lake. Middle: The Kaitoke Stream in the pine forest. Bottom: The Kaitoke Stream near the Wanganui airport.

Left: The Kaitoke Stream at the beach facing upstream.

## Kaitoke Stream structure Location: lake level weir

| Easting                                          | 2686420         |
|--------------------------------------------------|-----------------|
| Northing                                         | 6135865         |
| Date assessed                                    | 15/5/09         |
| Structure                                        | Weir            |
| Туре                                             | Weir            |
| Construction                                     | Wood and        |
| Width                                            | concrete<br>4 m |
| Water depth (inlet)                              | 0.45 m          |
| Water depth (outlet)                             | 0.67 m          |
| Inlet cross section                              | Flat            |
| Outlet cross section                             | Perched         |
| If perched (height)                              | 0.25 m          |
| If perched (undercut)                            | 0 m             |
| Likely severity of                               | Most flows      |
| barrier<br>Instream structures<br>known upstream | 0               |
| Instream structures<br>known downstream          | 0               |
|                                                  |                 |





Top: The Lake Kaitoke water level weir facing upstream. The weir structure was on a lean.

Bottom: The Lake Kaitoke water level weir facing downstream.

# **Knottingly Swamp**

#### **Knottingly Swamp**

NZMS 260: S23 987-130

Outlet stream length: 2.2 km

Date assessed: 28/1/09

Canopy cover: open

Fencing: none

Substrate: 100% sand

**Riparian vegetation:** Rank grass and some shrubs on the banks with the channel mostly choked by wild parsnip. Further back is pine plantation.

**General description:** Knottingly Swamp and its outlet stream are entirely within the Santoft Forest. Most of the channel totally choked with wild parsnip and at the time of visit most of the outlet stream was dry. There were some damp patches with small pools. The stream does not appear to enter the sea and the channel ceases in a large, deep pond. There is a gap in the dunes nearby where it may have flowed in the past. Given the amount of sand accumulation in this gap it is hard to imagine any linkage to the ocean in recent years.

Habitat assessments completed: 3 Instream structure assessments completed: 3 Potential problem instream structures: 0 Composite habitat quality score: 60.2 Cumulative barrier severity score: 0





Top right: The Knottingly Swamp lake.

Middle right: The outlet stream just downstream of the lake. The channel is wetted here and totally choked with wild parsnip.

Bottom right: Deeply incised dry channel in lower reaches of the outlet stream. Above left: The gap in the outer dunes that the stream may have flowed out in the past. Knottingly Swamp outlet stream structures



Left: The upstream most culvert. This culvert was overgrown and very difficult to find. It appeared to be made from wood. This was the only culvert of three that had water.

Top right and bottom right: The overgrown state of the other culverts which were all dry at the time of visit.

## Lake Koitiata

#### Lake Koitiata

NZMS 260: S23 970-185

Outlet stream length: 2.7 km

Date assessed: 27/1/09

Canopy cover: Mostly partly shady

Fencing: Mostly none

Substrate: 100% sand

**Riparian vegetation:** The banks were mostly covered in rank grass and herbage with some shrubs. Most of the channel was dry and filled with grasses and broadleaf herbs with patches of bare sand. Where the channel is still wetted it is choked with wild parsnip. Further back is pine plantation.

**General description:** The entire outlet stream is within the Santoft Forest. At the time of visit the channel was dry except for a reach in the lower section of the stream. Parts of the dry section were totally dry while others were still damp with isolated pools. Some of the culverts encountered were severely perched. The stream was not flowing to the sea as the gap in the fore dunes was filled with sand.

Habitat assessments completed: 4 Instream structure assessments completed: 4 Potential problem instream structures: 3 Composite habitat quality score: 63.19 Cumulative barrier severity score: 15





Top: Lake Koitiata Middle and bottom: The typical dry channel habitat that comprised the majority of the outlet stream. Left: The wetted reach was choked with wild parsnip.

### Lake Koitiata outlet stream structures

| Lake Koitiata structure                          |            |
|--------------------------------------------------|------------|
| Location: First culvert downstream               |            |
| from lake                                        |            |
| Easting                                          | 2696775    |
| Northing                                         | 6118330    |
| Date assessed                                    | 27/1/09    |
| Structure                                        | Culvert    |
| Туре                                             | Pipe       |
| Construction                                     | Concrete   |
| Length                                           | 12 m       |
| Diameter                                         | 0.45 m     |
| Water depth (inlet)                              | 0          |
| Water depth (outlet)                             | 0          |
| Inlet cross section                              | Flat       |
| Outlet cross section                             | Perched    |
| If perched (height)                              | 0.44 m     |
| If perched (undercut)                            | 0.91 m     |
| Likely severity of                               | Most flows |
| barrier<br>Instream structures<br>known upstream | 0          |
| Instream structures<br>known downstream          | 3          |





Top: Inlet of first culvert downstream of lake.

Bottom: Perched outlet of first culvert downstream of lake.

Left: The large pool (up to 0.75 m deep) at the culvert outlet presumable caused by scour at high flows.

### Lake Koitiata structure Location: Second culvert downstream from lake

| downstream from lake                             |            |
|--------------------------------------------------|------------|
| Easting                                          | 2696690    |
| Northing                                         | 6117895    |
| Date assessed                                    | 27/1/09    |
| Structure                                        | Culvert    |
| Туре                                             | Pipe       |
| Construction                                     | Concrete   |
| Length                                           | 7.5 m      |
| Diameter                                         | 0.7 m      |
| Water depth (inlet)                              | 0          |
| Water depth (outlet)                             | 0          |
| Inlet cross section                              | Flat       |
| Outlet cross section                             | Perched    |
| If perched (height)                              | 0.17 m     |
| If perched (undercut)                            | 0.75 m     |
| Likely severity of                               | Most flows |
| barrier<br>Instream structures<br>known upstream | 1          |
| Instream structures<br>known downstream          | 2          |
|                                                  |            |



Above: Inlet of second culvert downstream of lake.

Below: Perched outlet of second culvert downstream of lake.



# Lake Koitiata structure

Location: Third culvert downstream from lake

| 110111 Turke                                     |               |
|--------------------------------------------------|---------------|
| Easting                                          | 2696435       |
| Northing                                         | 6117575       |
| Date assessed                                    | 27/1/09       |
| Structure                                        | Culvert       |
| Туре                                             | Pipe (double) |
| Construction                                     | Concrete      |
| Length                                           | 12 m          |
| Diameter                                         | 0.3 / 0.45 m  |
| Water depth (inlet)                              | 0             |
| Water depth (outlet)                             | 0             |
| Inlet cross section                              | Flat          |
| Outlet cross section                             | Perched       |
| If perched (height)                              | 0.1 / 0.33 m  |
| If perched (undercut)                            | 0.92 / 0.48 m |
| Likely severity of                               | Most flows    |
| barrier<br>Instream structures<br>known upstream | 2             |
| Instream structures<br>known downstream          | 1             |
|                                                  |               |



Above: Inlet of third culvert downstream of lake.

Below: Perched outlet of third culvert downstream of lake.





Top left: Inlet of the forth culvert downstream of the lake. Here the channel was wetted.

Bottom left: Outlet of forth culvert downstream of lake.



## Lake Koputara

#### Lake Koputara

NZMS 260: S24 020-872

Outlet stream length: 3 km

Date assessed: 14/1/09

Canopy cover: Mostly open

Fencing: Mostly one side only

Substrate: 100% sand

**Riparian vegetation:** On the farmland, pasture and in the forested area, rank grass with pine trees further back.

**General description:** The Lake Koputara outlet stream first flows across a dairy farm before entering plantation forest. Some of this forest has recently been harvested. There is a lake level weir that may act as a fish barrier at lower flows. The stream had very little open water and minimal water movement was perceptible at the time of visit. Nearer the lake outlet weir the surface was covered in duckweed and further downstream the channel was choked with wild parsnip all the way to the estuary.

Habitat assessments completed: 4 Instream structure assessments completed: 4

**Potential problem instream structures:** 1

Composite habitat quality score: 79.23

Cumulative barrier severity score: 2.5

Top right: Lake Koputara outlet stream habitat just downstream of lake level weir.

Middle right: The Lake Koputara outlet stream as it crosses the Sexton dairy farm.

Bottom right: The Lake Koputara outlet stream as it enters the plantation forest. The water is totally obscured by rampant growth of wild parsnip.



### Lake Koputara outlet stream structures

---

| Lake Koputara structure                          |           |
|--------------------------------------------------|-----------|
| Location: Lake level weir                        |           |
| Easting                                          | 2701380   |
| Northing                                         | 6086675   |
| Date assessed                                    | 14/1/09   |
| Structure                                        | Weir      |
| Туре                                             | Weir      |
| Construction                                     | Concrete  |
| Width                                            | ~8 m      |
| Water depth (inlet)                              | 0.34      |
| Water depth (outlet)                             | 0.65      |
| Inlet cross section                              | Pooled    |
| Outlet cross section                             | Perched   |
| If perched (height)                              | 0.1 m     |
| If perched (undercut)                            | 0         |
| Likely severity of                               | Low flows |
| barrier<br>Instream structures<br>known upstream | 1         |
| Instream structures<br>known downstream          | 2         |

Top and bottom right: The Lake Koputara water level weir. At the time of visit water was pooled on either side with only a slight trickle flowing over the weir.



Below right and left: Culverts on the Koputara outlet stream that are unlikely to be problematic for fish passage.





# Lake Koputara 1, 2 3 and Lake Omanu complex

## Lake Koputara 1, 2, 3 and Lake Omanu complex (Whitebait Creek)

NZMS 260: S24 013-844, 009-823, 009-815

**Outlet stream length:** ~ 3.8 km (includes sections between lakes but not the lakes themselves)

Date assessed: 16,17,18/12/08

Canopy cover: Mostly open

**Fencing:** Ranging from none, one side to complete. Mostly one side only.

Substrate: 100% sand

**Riparian vegetation:** Mostly pasture with a section of plantation forest near Foxton Beach.

General description: Three Koputara lakes and Lake Omanu are linked with the outlet flowing into the Manawatu estuary at Foxton Beach. The upper lakes and outlet stream are on dairy farms. Downstream of Lake Omanu it flows across a pig and beef farm then through a small area of pine forest and then through Foxton Beach before entering the Manawatu estuary. Much of the upper part of the outlet stream is choked with wild parsnip. Lower down there is a lot of duckweed and through the pine forest there is more open water where the sandy substrate is visible. Through Foxton Beach to the start of the outlet estuary the channel is choked with wild parsnip. Most of the stream had minimal visible water movement.

Habitat assessments completed: 7

Instream structure assessments completed: 7

Potential problem instream structures: 2 Composite habitat quality score: 80.83

**Cumulative barrier severity score:** 5





Top: The outlet stream between Koputara lakes '2' and '3' choked with wild parsnip. Bottom: The outlet stream just downstream of Lake Omanu. Left: The outlet stream in the pine plantation just before flowing through Foxton Beach.





Above: The outlet stream entering the Manawatu estuary. Left: The outlet stream is totally obscured by wild parsnip as it flows through Foxton Beach.

## Lake Koputara 1, 2, 3 and Lake Omanu outlet stream structures

| Lake Koputara '2' structure<br>Location: Lake level weir |                                            |
|----------------------------------------------------------|--------------------------------------------|
| Easting                                                  | 2701390                                    |
| Northing                                                 | 6083550                                    |
| Date assessed                                            | 16/12/08                                   |
| Structure                                                | Weir                                       |
| Туре                                                     | Weir                                       |
| Construction                                             | Concrete                                   |
| Width                                                    | ~1.5 m                                     |
| Water depth (inlet)                                      | 0 (dry)                                    |
| Water depth (outlet)                                     | 0.18 m                                     |
| Inlet cross section                                      | Dry (likely<br>pooled if water<br>present) |
| Outlet cross section                                     | Perched                                    |
| If perched (height)                                      | 0.1 m                                      |
| If perched (undercut)                                    | 0                                          |
| Likely severity of barrier                               | Low flows                                  |
| Instream structures<br>known upstream                    | 0                                          |
| Instream structures<br>known downstream                  | 6                                          |



Top: The Koputara '2' lake level weir facing downstream. Bottom: The Koputara '2' lake level weir facing upstream

| Lake Koputara/Oma                                | Lake Koputara/Omanu complex |  |
|--------------------------------------------------|-----------------------------|--|
| Location: Seabury Ave culvert,                   |                             |  |
| Foxton Beach                                     |                             |  |
| Easting                                          | 2700040                     |  |
| Northing                                         | 6079520                     |  |
| Date assessed                                    | 18/12/08                    |  |
| Structure                                        | Culvert                     |  |
| Туре                                             | Pipe (1/2 circle)           |  |
| Construction                                     | Corrugated iron             |  |
| Length                                           | ~20 m                       |  |
| Diameter                                         | 1.08 m                      |  |
| Water depth (inlet)                              | 0.2                         |  |
| Water depth (outlet)                             | 0.05                        |  |
| Inlet cross section                              | Pooled                      |  |
| Outlet cross section                             | Flat                        |  |
| If perched (height)                              | 0                           |  |
| If perched (undercut)                            | 0                           |  |
| Likely severity of                               | Low flows                   |  |
| barrier<br>Instream structures<br>known upstream | 6                           |  |
| Instream structures<br>known downstream          | 0                           |  |





Top right: The overgrown inlet of the Seabury Ave culvert.

Bottom right: The outlet of the Seabury Ave culvert has boulders placed to prevent scouring and was the only location in the outlet stream where swift flows were encountered. At low flows this could potentially be a barrier to some fish because of the shallow water depth.



Above left: This triple culvert at the outlet of Lake Omanu poses no issue for fish passage.

Above right: A large school of inanga was observed swimming through this culvert below Palmer Rd.

## Lake Papaitonga

### Lake Papaitonga -Waiwiri Stream

NZMS 260: S25 982-600

Outlet stream length: ~5 km

Date assessed: 17/12/08

**Canopy cover:** Open **Fencing:** Mostly one side or partial. A few stretches have complete fencing.

Substrate: 100% sand

Riparian vegetation: Pasture and rank grass.

**General description:** Where Waiwiri Stream exits Lake Papaitonga, there was a lake level weir with a fish pass that lacked water at the time of assessment. This weir was totally overgrown and its size and structure could not be determined. Most of the Waiwiri channel has minimal visible water movement. Some reaches are totally obscured by macrophytes while others have some open water.

Habitat assessments completed: 3 Instream structure assessments completed: 4 Potential problem instream structures: 2 Composite habitat quality score: 94.38 Cumulative barrier severity score: 7.5







Top: A totally fenced reach near the Lake Papaitonga outlet. Here there is a lot of open water. Unfortunately the cattle are inside the riparian buffer zone.

Bottom: Waiwiri Stream just downstream of the Lake Papaitonga outlet.

Left: Waiwiri Stream near where it enters the outer dunes. Here the channel is choked by wild parsnip.

### Lake Papaitonga outlet stream structures

| Lake Papaitonga –                       |                  |
|-----------------------------------------|------------------|
| Waiwiri Stream                          |                  |
| Location: Lake level                    | weir             |
| Easting                                 | 2697580          |
| Northing                                | 6060025          |
| Date assessed                           | 17/12/08         |
| Structure                               | Weir             |
| Туре                                    | Weir             |
| Construction                            | ? Sandbags       |
| XX7* J41.                               | visible          |
| Width                                   | ? at least 2 m   |
| Water depth (inlet)                     | ?                |
| Water depth (outlet)                    | ?                |
| Inlet cross section                     | ? probably       |
|                                         | pooled           |
| Outlet cross section                    | Perched          |
| If perched (height)                     | ? at least 0.5 m |
| If perched (undercut)                   | 0 m              |
| Likely severity of                      | Most flows       |
| barrier                                 |                  |
| Instream structures<br>known upstream   | 0                |
| Instream structures<br>known downstream | 3                |





Top: The overgrown lake level weir where the Waiwiri Stream exits Lake Papaitonga

Bottom: The wooden fish pass which lacked water at the time of assessment.

Left: The fish pass was in clear need of maintenance.

#### Lake Papaitonga -Waiwiri Stream Location: Just downstream of lake level weir Easting 2697485 6060055 Northing Date assessed 17/12/08 Structure Culvert Pipe Туре Construction Concrete 5 m Length 0.9 m Diameter Water depth (inlet) no access Water depth (outlet) 0.09 m Inlet cross section Flat **Outlet cross section** Flat If perched (height) 0 m 0 m If perched (undercut) Likely severity of Low flows barrier **Instream structures** 2 known upstream **Instream structures** 1 known downstream



Above: Culvert outlet. The minimal amount of water flowing through this culvert at the time of assessment lead to the conclusion that this structure could be a fish barrier at low flows.

### **Ohau River Dune Lakes**

#### **Ohau River Dune Lakes**

NZMS 260: S25 926-568

Outlet stream length: 1 km

Date assessed: 22/12/08, 13/1/09

Canopy cover: Open

Fencing: Some one side, some none

Substrate: 100% sand

**Riparian vegetation:** Mostly long, rank pasture grass. Some small shrubs in places.

General description: The outlet stream was overgrown with macrophytes and there was minimal visible water movement at the time of visit. Much of the pasture was long and rank and had not been grazed for some time. The 2<sup>nd</sup> culvert downstream of the lake was concealed by the collapse of the sandy edges of the crossing. The outlet could not be found but water flow was observed indicating that the culvert was not blocked. Maintenance was required however. The downstream most culvert had a jammed outlet cap originally designed to prevent tidal surges up the stream. This likely prevents fish passage and needs to be either removed or maintained. Just downstream of this capped culvert the outlet stream flows into the Waikawa Stream.

Habitat assessments completed: 2 Instream structure assessments completed: 3 Potential problem instream structures: 1 Composite habitat quality score: 70 Cumulative barrier severity score: 5

Top right: One of the Ohau Dune lakes.

Middle right: The outlet stream near the lake/wetland area.

Bottom right: The outlet stream about 50 metres upstream of Waikawa Stream.



### **Ohau Dune Lakes outlet stream structures**

| Ohau Dune Lakes                                  |                  |
|--------------------------------------------------|------------------|
| Location: culvert at outlet into                 |                  |
| Waikawa Stream                                   |                  |
| Easting                                          | 2692120          |
| Northing                                         | 6056125          |
| Date assessed                                    | 13/1/09          |
| Structure                                        | Culvert          |
| Туре                                             | (capped)<br>Pipe |
| Construction                                     | Concrete         |
| Length                                           | ~ 7 m            |
| Diameter                                         | 0.5 m            |
| Water depth (inlet)                              | 0.33 m           |
| Water depth (outlet)                             | Underwater       |
| Inlet cross section                              | Pooled           |
| Outlet cross section                             | Pooled           |
| If perched (height)                              | 0                |
| If perched (undercut)                            | 0                |
| Likely severity of                               | Most flows       |
| barrier<br>Instream structures<br>known upstream | 2                |
| Instream structures<br>known downstream          | 0                |



Top: Inlet overgrown by macrophytes. Bottom: Capped culvert outlet. The cap is jammed and was underwater at time of visit.



Above left: The sides of this crossing had crumbled obscuring this culvert but there appeared to be good water flow.

Above right: Abundant macrophyte growth obscures this culvert.

## **Ohau Loop**

#### **Ohau Loop**

NZMS 260: S25 964-584 Outlet stream length: 0.6 km Date assessed: 18/12/08 Canopy cover: Open Fencing: Mostly complete both sides Substrate: 100% sand

Riparian vegetation: retired veg./rank pasture

**General description:** This channel is artificial to drain the Ohau Loop which itself is a former meandering section of the Ohau River that has been separated from the river to speed up flood flows. The first 100 m is relatively narrow (i.e. 2 m) and then the channel widens substantially. The channel is choked with macrophytes and no water movement was observed. The channel is fenced and the riparian vegetation is dominated by rank pasture grass.

Habitat assessments completed: 1 Instream structure assessments completed: 2 Potential problem instream structures: 1 Composite habitat quality score: 78 Cumulative barrier severity score: 2.5







Top: The channel totally obscured by macrophytes. Bottom: The outlet channel widens after the first 100 m. Left: The outlet of the culvert leading from the Ohau Loop to the channel.

| Location: Outlet floodgate structure             |                       |  |
|--------------------------------------------------|-----------------------|--|
| Easting                                          | not assessed*         |  |
| Northing                                         | not assessed          |  |
| Date assessed                                    | not assessed          |  |
| Structure                                        | culvert               |  |
| Туре                                             | pipe (with floodgate) |  |
| Construction                                     | concrete              |  |
| Length                                           | ?                     |  |
| Diameter                                         | ~1.2 m                |  |
| Water depth (inlet)                              | ?                     |  |
| Water depth (outlet)                             | ?                     |  |
| Inlet cross section                              | Pooled                |  |
| Outlet cross section                             | Pooled                |  |
| If perched (height)                              | NA                    |  |
| If perched (undercut)                            | NA                    |  |
| Likely severity of                               | Low flows             |  |
| barrier<br>Instream structures<br>known upstream | 1                     |  |
| Instream structures<br>known downstream          | 0                     |  |

**Ohau Loop** 





Top\*: The Ohau Loop flood gated culvert was not visited but would likely be a barrier at low flows when water flow is insufficient to keep the gate open wide enough to allow fish passage.

Bottom and left\*: The flood gate mechanism is overgrown with vegetation. This may affect its operation. Regular maintenance of the flood gate is required.

\*Photos were taken in June 2007 and were supplied by Horizons Regional Council.

## **Omanuka Lagoon and Pukepuke Lagoon**

### Omanuka Lagoon and Pukepuke Lagoon

NZMS 260: Omanuka S24 075-950

Pukepuke S24 024-935

**Outlet stream length:** Omanuka to Pukepuke 7.13 km, Pukepuke to sea 3.75 km **Date assessed:** 15/1/09, 21/1/09

Canopy cover: Open

Fencing: Various from complete to none.

Substrate: 100% sand

**Riparian vegetation:** Pasture and rank grass are the dominant vegetation types. Downstream of Pukepuke Lagoon the stream enters pine forest but between the trees and the channel is a zone of long grass and some shrubs.

General description: At the time of assessment the channel was dry for some distance downstream of Omanuka Lagoon. Once wetted the channel is choked with macrophytes and no water movement is visible. Much of the channel between Omanuka and Pukepuke Lagoon has obviously been straightened to facilitate drainage. Downstream of Pukepuke Lagoon the channel enters pine forest but the trees are set back from the stream channel and provide little shade. More flow and areas of open water are visible as the stream approaches the sea. Schools of inanga were commonly seen in these areas of open water.

Habitat assessments completed: 5 Instream structure assessments completed: 8

Potential problem instream structures: 2

Composite habitat quality score: 91.79

Cumulative barrier severity score: 10





Top: The channel not far downstream of the upper dry reach. Bottom: The channel upstream of Pukepuke Lagoon. Left: The channel downstream of Pukepuke Lagoon with significant areas of open water.

### **Omanuka Lagoon and Pukepuke Lagoon outlet stream structures**

Omanuka Lagoon and Pukepuke Lagoon Location: Pukepuke Lagoon lake

level weir with new fish ramp

| Easting                                          | 2701605       |
|--------------------------------------------------|---------------|
| Northing                                         | 6094225       |
| Date assessed                                    | 18/5/09       |
| Structure                                        | Weir          |
| Туре                                             | Weir          |
| Construction                                     | Concrete &    |
| Width                                            | wood<br>5.5 m |
| Water depth (inlet)                              | 0.4 m         |
| Water depth (outlet)                             | 0.09 m        |
| Inlet cross section                              | Flat          |
| Outlet cross section                             | Flat          |
| If perched (height)                              | 0 m           |
| If perched (undercut)                            | 0 m           |
| Likely severity of                               | Low flows     |
| barrier<br>Instream structures<br>known upstream | 5             |
| Instream structures<br>known downstream          | 2             |





Top, bottom, top left, bottom left: The Pukepuke lake level weir. A fish ramp has been installed this summer to improve the fish passage potential of the weir. There may still be fish passage issues during lower lake levels when the water level is below the lip of the weir and no water flows down the ramp.

# Omanuka Lagoon and Pukepuke Lagoon

Location: Old, partially destroyed Pukepuke Lagoon lake level weir

| Pukepuke Lagoon lake level weir |            |
|---------------------------------|------------|
| Easting                         | 2700575    |
| Northing                        | 6094545    |
| Date assessed                   | 15/1/09    |
| Structure                       | Weir       |
| Туре                            | Weir       |
| Construction                    | Concrete   |
| Width                           | 5.3 m      |
| Water depth (inlet)             | 0.25 m     |
| Water depth (outlet)            | 0.02 m     |
| Inlet cross section             | Pooled     |
| Outlet cross section            | Perched    |
| If perched (height)             | 0.19 m     |
| If perched (undercut)           | 0 m        |
| Likely severity of              | Most flows |
| barrier                         |            |
| Instream structures             | 6          |
| known upstream                  |            |
| Instream structures             | 1          |
| known downstream                |            |
|                                 |            |





Top: This old weir structure has had the middle knocked out of it sometime in the past but still is a perched barrier. Bottom: From the scale of the concrete surrounds, it is obvious this was once a substantial structure. Left: The structure has a significant concrete base, which itself creates a small perched step.

# Omanuka Lagoon and Pukepuke Lagoon

Location: Snapped double culvert just downstream of old weir.

| Just do whisticalli of old                  |                                                                        |
|---------------------------------------------|------------------------------------------------------------------------|
| Easting                                     | 2700510                                                                |
| Northing                                    | 6094590                                                                |
| Date assessed                               | 15/1/09                                                                |
| Structure                                   | Culvert                                                                |
| Туре                                        | Pipe (double)                                                          |
| Construction                                | Concrete                                                               |
| Length                                      | ~6 m                                                                   |
| Diameter                                    | 1 m                                                                    |
| Water depth (inlet)                         | 0.13 m                                                                 |
| Water depth (outlet)                        | 0.05 m                                                                 |
| Inlet cross section                         | Flat                                                                   |
| Outlet cross section<br>If perched (height) | Flat (would be<br>perched if not<br>snapped)<br>0 m                    |
| -                                           | •                                                                      |
| If perched (undercut)                       | 0 m                                                                    |
| Likely severity of<br>barrier               | Low flows<br>(further<br>subsidence<br>could results in<br>most flows) |
| Instream structures<br>known upstream       | 7                                                                      |
| Instream structures<br>known downstream     | 0                                                                      |









Top: The culvert inlet Middle and bottom: The end section of both pipes has been undermined and has snapped. Left: The culvert outlet. The left hand pipe is totally separated such that no water flows down the end section. The right hand pipe maintains continuous flow. From the angle of the pipes it is likely they were perched and undercut prior to snapping.

## Pukemarama Lagoon

#### Pukemarama Lagoon

#### NZMS 260: S24 024-935

Outlet stream length: ~3.5 km

Date assessed: 23/1/09

**Canopy cover:** Mainly open. Significantly shaded for last ~ 1.2 km.

Fencing: Mostly unfenced.

Substrate: 100% sand

**Riparian vegetation:** Mostly pasture, some poplar and pine shelter belt trees with the final section flowing through a 'wasteland' of predominantly blackberry, willow, and toitoi.

**General description:** The first ~2 km of the channel is an unfenced depression in a paddock that was mostly dry at the time of visit. Apart from a damp, swampy section just upstream of Tangimoana Rd, surface water flow only began where the channel dropped down to the Rangitikei River floodplain. The channel then made its way through impenetrable vegetation to the Rangitikei River. It would appear surface flow of the upper reaches of the Pukemarama Lagoon outlet stream is directly related to groundwater levels.

Habitat assessments completed: 2 Instream structure assessments completed: 7 Potential problem instream structures: 0 Composite habitat quality score: 48.05 Cumulative barrier severity score: 0





Top: Pukemarama Lagoon Bottom: The Pukemarama Lagoon outlet stream habitat where the channel is wetted but not flowing. Left: The Pukemarama Lagoon outlet stream habitat on the Rangitikei River floodplain where there was surface flow at the time of assessment.

# **Te Hakari Wetlands**

#### **Te Hakari Wetlands**

NZMS 260: S25 928-577

Outlet stream length: 0.3 km

Date assessed: 18/12/08

Canopy cover: Open

Fencing: Complete

Substrate: 100% sand

**Riparian vegetation:** Retired vegetation, predominantly long, rank grass. Small reach with exotic trees.

**General description:** The Te Hakari outlet is short with little visible water movement and overgrown by macrophytes. About half way between the Te Hakari lake and the outlet into the Ohau estuary there is a lake level weir with a fish pass. The weir is overgrown and the fish pass was lacking water at the time of assessment. There is a large amount of woody debris in the channel downstream of the 2<sup>nd</sup> culvert which was presumably deposited during storm events.

Habitat assessments completed: 2 Instream structure assessments completed: 3 Potential problem instream structures: 1 Composite habitat quality score: 81.78 Cumulative barrier severity score: 5





Top: The start of the Te Hakari outlet stream.

Bottom: The Te Hakari outlet stream channel full of woody debris just downstream of the downstreammost culvert.

Left: The estuarine lower reach of the Te Hakari outlet stream.

### Te Hakari Wetland outlet stream structures

| <b>Te Hakari Wetland</b><br>Location: lake level weir |                       |  |
|-------------------------------------------------------|-----------------------|--|
| Easting                                               | 2692765               |  |
| Northing                                              | 6057940               |  |
| Date assessed                                         | 18/12/08              |  |
| Structure                                             | Weir                  |  |
| Туре                                                  | Weir                  |  |
| Construction                                          | ? Sandbags<br>visible |  |
| Width                                                 | ? at least 2 m        |  |
| Water depth (inlet)                                   | ~0.4 m                |  |
| Water depth (outlet)                                  | ~0.3 m                |  |
| Inlet cross section                                   | Pooled                |  |
| Outlet cross section                                  | Perched               |  |
| If perched (height)                                   | ~0.5 m                |  |
| If perched (undercut)                                 | 0 m                   |  |
| Likely severity of<br>barrier                         | Most flows            |  |
| Instream structures<br>known upstream                 | 1                     |  |
| Instream structures<br>known downstream               | 1                     |  |



Top: The Te Hakari lake level weir and fish pass was totally overgrown by long grass.

Bottom: The fish pass was lacking water and blocked with grass at the time of assessment.

## Lake Waipu and Lake Oraekomiko

#### Lake Waipu and Lake Oraekomiko

#### NZMS 260: S23 938-268

**Outlet stream length:** 2.2 km to Turakina River, 7 km to ocean. Lake Oraekomiko to Waipu outlet stream ~0.660 m **Date assessed:** 18/5/09

Canopy cover: Open to partly shaded

#### Fencing: None

Substrate: 100% sand

**Riparian vegetation:** Rough pasture and some exotic trees.

General description: The outlet stream drains Lake Waipu through a wide earth dam. No surface water was flowing from the lake at the time of assessment and the first section of the outlet stream was dry and looked to have been recently "cleaned out" by a digger. Surface water resumes in a patch of mature pine trees just downstream of the lake. In the forest there is little visible water movement and a number of deep pools with open water and duckweed. The channel then meanders through rough pasture and patches of small pine trees where there are some watercress and grass in the channel. Amongst a patch of small pine trees there is a reach with the substrate covered in iron floc. In the lower reaches the channel becomes wide and indistinct and filled with grass and watercress. Before becoming channelized again just before entering the Turakina River. The Lake Oraekomiko outlet was dry and did not appear to flow very often. No channel was obvious at the lake outlet but the ~400 m before entering the Waipu outlet was a significant depression in the sand indicating that at time there must be significant flows.

Habitat assessments completed: 4

Instream structure assessments completed: 4

Potential problem instream structures: 2

**Composite habitat quality score:** 52.53

Cumulative barrier severity score: 10



Top: Lake Waipu outlet stream just before exiting stand of mature pine trees. Upper middle: Waipu outlet stream reach with iron floc.

Lower middle: Waipu outlet stream habitat just downstream of main vehicle crossing. Bottom: Just before entering the Turakina River, the channel narrows.

### Lake Waipu outlet stream structures

| Lake Waipu<br>Location: main vehicle crossing    |            |  |
|--------------------------------------------------|------------|--|
| Easting                                          | 2693380    |  |
| Northing                                         | 6125820    |  |
| Date assessed                                    | 18/5/09    |  |
| Structure                                        | Culvert    |  |
| Туре                                             | Pipe       |  |
| Construction                                     | Plastic    |  |
| Length                                           | 10 m       |  |
| Diameter                                         | 0.36 m     |  |
| Water depth (inlet)                              | 0.11 m     |  |
| Water depth (outlet)                             | 0.05 m     |  |
| Inlet cross section                              | Flat       |  |
| Outlet cross section                             | Perched    |  |
| If perched (height)                              | 0.06 m     |  |
| If perched (undercut)                            | ~0.3 m     |  |
| Likely severity of                               | Most flows |  |
| barrier<br>Instream structures<br>known upstream | 2          |  |
| Instream structures<br>known downstream          | 1          |  |





Top: The main vehicle crossing culvert perched outlet.

Bottom: The main vehicle crossing culvert perched inlet concealed by vegetation.

Left: The wide earth dam at the outlet of Lake Waipu. Two culverts were visible and at the time of assessment they were dry. Water would only flow when the lake level is higher.

| Lake Waipu                      |                 |  |
|---------------------------------|-----------------|--|
| Location: earthworks ~20 m from |                 |  |
| Turakina River                  |                 |  |
| Easting                         | 2693100         |  |
| Northing                        | 6125600         |  |
| Date assessed                   | 18/5/09         |  |
| Structure                       | Drop created by |  |
|                                 | earthworks      |  |
| Туре                            | Artificial fall |  |
| Construction                    | Natural         |  |
|                                 | substrate       |  |
| Width                           | 0.55 m          |  |
| Water depth (inlet)             | 0.03 m          |  |
| Water depth (outlet)            | 0.04 m          |  |
| Inlet cross section             | Flat            |  |
| Outlet cross section            | Perched         |  |
| If perched (height)             | 0.4 m           |  |
| If perched (undercut)           | 0 m             |  |
| Likely severity of              | Most flows      |  |
| barrier                         |                 |  |
| Instream structures             | 3               |  |
| known upstream                  |                 |  |
| Instream structures             | 0               |  |
| known downstream                |                 |  |





Above and bottom: Recent earthworks on a vehicle crossing just upstream of the Waipu outlet confluence with the Turakina River. The soil has been removed exposing the mudstone bedrock and the stream has created a fall over this.

Left: The confluence of the Lake Waipu outlet stream with the Turakina River. The stream enters in the mid-right of the photo.

# Lake Wiritoa – Lake Pauri

#### Lake Wiritoa and Lake Pauri

NZMS 260: Wiritoa R22 885-346, Pauri R22 893-343 Outlet stream length: Wiritoa – sea ~5.2 km, Pauri – Wiritoa ~400 m

Date assessed: 19/5/09

**Canopy cover:** Mostly open, a few shaded reaches amongst pine trees

Fencing: Mostly none

Substrate: 100% sand

**Riparian vegetation:** Mostly rough pasture with some patches of pine trees.

General description: The join of Lakes Pauri and Wiritoa is mostly a wetland area with the only distinct channel being obvious at a vehicle crossing with a culvert. Upon exiting Lake Wiritoa the first ~1.7 km of the channel was dry and did not appear to flow very often and had either bare earth or pasture plants growing. Surface water resumed in a patch of pine trees as a series of pools for around 100 m before a continuously wetted channel began. This then flowed ~1.5 km before entering a wetland area that included a lake created by an artificial dam. Downstream of the dam there is another wetland area from which the channel originates before entering the Kaitoke Stream about 300 m from the sea. The channel contains a mix of mostly grass and watercress with many reaches of bare sand.

Habitat assessments completed: 4

Instream structure assessments completed: 6

**Potential problem instream structures:** 2

**Composite habitat quality score:** 49.93

Cumulative barrier severity score: 10





Top: The wetland between Lake Pauri and Lake Wiritoa. The only distinct channel between the lakes occurs at a vehicle crossing which has a culvert.

Bottom: The dry Lake Wiritoa outlet channel in the first stand of pine trees downstream of the lake. Surface water flow here appears rare.

Left: The Lake Wiritoa outlet a few hundred metres from where surface water begins.





Right: The Lake Wiritoa outlet with surface water upstream of the dam and wetland area.

Above: The Lake Wiritoa outlet just upstream of the confluence with Kaitoke Stream.

### Lake Wiritoa and Lake Pauri outlet stream structures

Location: Weir a few hundred metres upstream of where the channel becomes wetted

| channel becomes wetted                           |                       |  |
|--------------------------------------------------|-----------------------|--|
| Easting                                          | 2686760               |  |
| Northing                                         | 6134615               |  |
| Date assessed                                    | 19/5/09               |  |
| Structure                                        | Weir                  |  |
| Туре                                             | Weir                  |  |
| Construction                                     | Steel with wooden top |  |
| Width                                            | 1.8 m                 |  |
| Water depth (inlet)                              | 0 m                   |  |
| Water depth (outlet)                             | 0 m                   |  |
| Inlet cross section                              | Flat                  |  |
| Outlet cross section                             | Perched               |  |
| If perched (height)                              | 0.6 m                 |  |
| If perched (undercut)                            | 0 m                   |  |
| Likely severity of                               | Most flows            |  |
| barrier<br>Instream structures<br>known upstream | 3                     |  |
| Instream structures<br>known downstream          | 2                     |  |



Above: Artificial weir a few hundred metres upstream of where the channel becomes wetted. The purpose of this weir was unclear.

| Lake WIIIlua                          |                                 |  |
|---------------------------------------|---------------------------------|--|
| Location: Artificial earth dam        |                                 |  |
| creating a small lake                 |                                 |  |
| Easting                               | 2684520                         |  |
| Northing                              | 6135125                         |  |
| Date assessed                         | 19/5/09                         |  |
| Structure                             | Culvert (double<br>but one dry) |  |
| Туре                                  | Pipe                            |  |
| Construction                          | Steel                           |  |
| Length                                | ~5 m                            |  |
| Diameter                              | 0.5 m                           |  |
| Water depth (inlet)                   | 0.18 m                          |  |
| Water depth (outlet)                  | 0.05 m                          |  |
| Inlet cross section                   | Flat                            |  |
| Outlet cross section                  | Perched                         |  |
| If perched (height)                   | 0.1 m                           |  |
| If perched (undercut)                 | 0.5 m                           |  |
| Likely severity of<br>barrier         | Most flows                      |  |
| Instream structures<br>known upstream | 4                               |  |
| Instream structures known downstream  | 1                               |  |
|                                       |                                 |  |

Lake Wiritoa





Top: The dam culvert inlet.

Bottom: The perched outlet of the dam culvert. The second culvert was dry and only flows when the lake level is higher.

Left: The small lake on the Lake Wiritoa outlet stream which appears to have been created by an artificial earth dam.

### 4. Discussion

#### 4.1 The condition of coastal lake and wetland outlet streams

There was high habitat homogeneity within and among the outlet streams that were assessed. The surrounding land use and low gradient of these streams typically means they are unshaded, at least partially fenced, have very sluggish flow, are quite shallow, have a sand substrate and are choked by macrophyte growth. Visible open water was generally rare with only Hokio Stream (Lake Horowhenua outlet), Waiwiri Stream (Lake Papaitonga outlet), Kaikokopu Stream (Lake Kaikokopu outlet), Kaitoke Stream (Lake Kaitoke outlet), and the Lake Wiritoa and Lake Waipu outlets having channels where the waters surface was not predominantly concealed by macrophyte growth. Even though the streams are typically unshaded, the abundance of emergent macrophytes, especially wild parsnip, means most streams were shaded to some degree. A number of streams also had reaches shaded by stands of pine trees.

Along their length, the assessed outlet streams had little habitat diversity. They lack variability in flow velocity, water depth and substrate size. Natural in-stream structures such as logs and undercut banks are rare or absent. In general, the habitat of coastal outlet streams is analogous to those of long, shallow ponds. A few assessed streams were mostly dry along their length with the channel having no aquatic environment at all. The most extreme case of this was the Pukemarama Lagoon outlet where the stream for much of its length was simply a grassed depression crossing paddocks.

Of all the streams assessed, the Hokio Stream was unique in being deep, not totally choked by macrophytes and having a section of cobbled, fast-flowing riffle habitat. It was probably the largest of the streams assessed and this likely contributes to this uniqueness as smaller, shallower streams would be more likely to be totally choked by macrophytes. Overall, the coastal lake and wetland streams that were

assessed are in a poor state. However, with a lack of information on the original 'pristine' conditions of such streams it is difficult to determine exactly how degraded they are.

Prior to European development of coastal land for farming and forestry, it is likely the coastal dune environment was much more dynamic with a greater wetland area than now. For example, the once extensive swamp surrounding Lake Kaikokopu was apparently continuous with the swamp associated with Pukepuke Lagoon (Esler 1978). Now these systems are separated by over 3 km of predominantly farmed pasture. Adkin (1948) sums up the situation well in stating that the lagoons in the Manawatu to Otaki section of the dune-belt were "beyond enumeration" and that recently "the general tendency is for these picturesque and moisture-providing sheets of water to disappear from the face of the landscape." Adkin (1948) also describes the lowering of the water table in the Lake Papaitonga area resulting from clearing and straightening of the Waiwiri Stream in 1938.

Dunes have been stabilised by forestry while wetlands were drained to allow pastoral farming. Some of the outlet streams would not have been simple channels running to the sea as they are now. There would have been other wetland areas downstream of the existing ones and in some places there would not necessarily have been a defined channel. For example, at the outlet end of Lake Papaitonga there was a large wetland area known as Reporoa (Adkin 1948). This area is now pastured. Sand dune movement likely had a major influence on channel geomorphology and connectivity to the sea. Dune movement in some instances may have blocked access to the ocean for periods, altered channel courses, and ultimately in-filled some lakes and wetlands while new ones would form in hollows. Additionally, tectonic events causing uplift have also played a role in channel and wetland formation and will in the future. For example, the 1840 earthquake separated the shared estuary of the Waikawa

Stream and Ohau River, forming the Te Hakari and Ohau Dune Lake wetlands. In summary, the environment has changed from a dynamic one of shifting dunes and river mouths to a static one dominated by fixed channels, drainage and dune stabilisation.

Given this profound change in the physical processes influencing the coastal dune landscape, restoration of outlet streams is never going to recreate "pristine" conditions. Restoration must instead focus on assisting the existing streams reach their ecological potential through fencing to keep farm animals out of the stream and riparian zone, planting of the riparian zone to filter runoff and provide shade, and alteration of any in-stream structures that prevent the free movement of diadromous fish species.

#### 4.2 Artificial in-stream structures

Most of the in-stream structures encountered were culverts, usually being circular concrete or plastic pipes. Because of the catchment morphology (low gradient, low altitude) the coastal outlet streams are not subject to extreme high flow events. Thus despite the soft sand substratum, erosion of the stream bed creating perched and undercut culvert outlets was rare. However, three out of four culverts on the Lake Koitiata outlet stream displayed major outlet erosion and perching resulting from culverts of too small a diameter being installed. At the time of assessment this outlet was dry but it is evident that when water levels are high, water pools upstream of the culvert and is forced at great velocity through the culvert causing significant scouring at the outlet. Other problem culverts were not this extreme and most would benefit from the stream bed at the outlet being built up to meet the level of the culvert. One culvert that does require prompt remediation is on the Pukepuke Lagoon outlet stream. A section of this double culvert has snapped creating a ramp from one pipe

and totally separating the other, creating a perch which is likely a barrier to fish movement. Further subsidence will likely result in the structure being totally impassable.

A number of wetland/lake level weirs were recorded and it is this kind of structure that more commonly poses problems for fish passage. During low to normal flow levels these structures typically hold water behind them often with an absence of any surface flow if the upstream level is below the top of the weir. At these times there is no way for any fish to pass them. During high flows if the downstream water surface is significantly lower than the top of the weir, a swift waterfall over the weir may be created. This may also prevent the passage of fish. Other weirs, such as the Lake Horowhenua (Hokio Stream) weir become totally submerged during higher water levels and are not a barrier at these times. Weirs at Lake Papaitonga (Waiwiri Stream), Te Hakari and Lake Kaikokopu (Kaikokopu Stream weir at town not lake weir) appeared to prevent fish passage for most of the time while weirs at Lake Koputara 2, Lake Horowhenua (Hokio Stream) and Lake Koputara likely affect fish passage during low flow periods.

Weirs are often the subject of fish pass construction and these were encountered at some sites. Fish passes had been constructed on the level weirs of Lake Papaitonga (Waiwiri Stream) and Te Hakari but unfortunately none were operational at the time of assessment. The Lake Papaitonga and Te Hakari fish passes were totally overgrown and locating them was fortuitous. In the last two months, the weir at Pukepuke Lagoon has had a fish ramp installed that should allow the free passage of fish except when water levels are lower than the top of the weir.

#### **4.3 Restoration priorities**

Given the homogeneity of in-stream and riparian conditions encountered and the relatively degraded state of the outlet streams, prioritising restoration efforts based solely on the condition of the outlet streams is not sensible. Instead the quality of the source lake or wetland is an important determinant of where to begin restoration efforts. There is little point trying to improve the condition of an outlet stream in terms of water quality and fish diversity if the source lake or wetland is in poor ecological condition. Equally, ephemeral channels are unlikely to benefit greatly from riparian restoration. Thus riparian restoration efforts involving fencing and planting of the stream banks should be concentrated on those outlet streams that have a high quality source lake or wetland. We believe the outlets of Lake Horowhenua (Hokio Stream), Lake Papaitonga (Waiwiri Stream) and Pukepuke Lagoon (excluding the section upstream to the Omanuka Lagoon) would benefit most from riparian restoration. Sections of Hokio Stream already have significant riparian vegetation and the removal of willows that is planned (pers. com. Noel Proctor, Horizons Regional Council) will open up areas for the planting of preferred riparian species.

Fish passage restoration would be most beneficial where the removal of barriers would open up the greatest area of quality upstream fish habitat. There is little point for example of repairing the poorly designed culverts of the ephemeral Lake Koititata outlet stream in preference to the barriers on the Pukepuke Lagoon outlet. We recommend that the removal or mitigation of identified barriers on the outlets of Lake Papaitonga (Waiwiri Stream) and Pukepuke Lagoon be of the greatest priority, closely followed by alteration of the Lake Horowhenua (Hokio Stream) weir to allow fish passage at all water levels. Given the proximity to the coast of these wetland/lakes systems, any fish passes must allow the free passage of all native fish species including the poorest of climbers (i.e. inanga and smelt). The planting of

riparian vegetation may also ultimately improve fish passage if high temperatures and low dissolved oxygen concentrations are ameliorated by the closing of the canopy and shading out of macrophytes.

#### 4.4 Other issues

A number of factors other than fish barriers and habitat condition may influence the ultimate decision on where to expend restoration efforts. Landowner cooperation and/or participation is crucial to the success of any riparian restoration efforts. The visibility of restoration efforts to the public may also be an issue. For example, much of the Hokio Stream flows alongside the road to Hokio Beach in contrast to the Pukepuke Lagoon outlet which is almost entirely within private forestry land. Budgetary constraints will also be a major issue which may mean the length of riparian restoration possible may be limited and the length of the outlet stream may be a consideration.

The aims of the restoration efforts (increased fish diversity and improved water quality) may not be realised despite riparian fencing and planting and repair of fish barriers. Reinstating fish passage may not necessarily lead to increased diversity of fish species if other factors are limiting fish species diversity and abundance (i.e. pest fish, poor recruitment, overfishing). Lake Horowhenua and Hokio Stream for example, are laden with perch which likely predate and compete with native fish species. Riparian fencing and planting may have limited impact on water quality where there are significant inputs from tributaries and linkages with groundwater. The water quality of the source lake or wetland and its upstream catchment will also be a major influence on outlet stream water quality.

#### 4.5 Further work

There are a number of further investigations that would provide more detailed information on water quality and fish diversity to further improve the prioritisation and future monitoring of stream restoration.

- The drivers of various aspects of outlet stream water quality could be determined. For example, it would be advantageous to know if the source of soluble nitrogen was predominantly from the source lake/wetland, groundwater, tributaries or runoff. Additionally, the diurnal dissolved oxygen range and how this changes during any macrophyte dieback would give an indication of whether the excessive macrophyte growths are necessarily bad.
- Recording the water levels at some lake level weirs (e.g. Lake Horowhenua) would give an indication of how much of the year the weir is actually a barrier to fish passage.
- Predicting what native aquatic species (plant and animal) should be present in such streams needs to be a starting point for any monitoring program.

## **5.** Conclusion

Based on in-stream, riparian and source lake/wetland quality and the presence of fish barriers, the highest priority outlet streams for restoration are those of Lake Horowhenua (Hokio Stream), Lake Papaitonga (Waiwiri Stream) and Pukepuke Lagoon (excluding upstream section to Omanuka Lagoon). Any restoration efforts must have realistic, defined and measurable targets and not nebulous goals such as "improved water quality". If the proposed restoration efforts are to be implemented then sufficient time must be allowed to develop a robust monitoring methodology and perform pre-restoration monitoring.

73

### Acknowledgements

Thank you to James Lambie (Horizons Regional Council) for providing site details and commenting on an earlier draft. Noel Proctor (Horizons Regional Council) provided much appreciated access and assistance at a number of sites. Thanks also to the other Horizons staff and Dr Zoe Dewson who provided critical comment on an earlier draft report.

## References

- Adkin, G.L. (1948) Horowhenua its Maori place names and their topographic and historical background. Polynesian Society Memoir No. 26, Department of Internal Affairs, Wellington.
- Boubee, J., Jowett, I., Nichols, S. and Williams, E. (1999) Fish Passage at Culverts –
   A review, with possible solutions for New Zealand indigenous species.
   Department of Conservation, Wellington and NIWA, Hamilton.
- Collier, K. and Kelly, J. (2005) Regional guidelines for ecological assessments of freshwater environments – macroinvertebrate sampling in wadeable streams. *Environment Waikato Technical Report TR2005/02.*
- Environment Waikato (2001) Fish passage at culverts a survey of the Coromandel Peninsula and Whaingaroa Catchment (11/00 – 04/01). *Environment Waikato Technical Series 2001/08*.
- Environment Waikato (2007) Assessment of Fish Passage within Selected Districts of the Waikato Region. *Environment Waikato Technical Series 2007/03*.
- Esler, A.E. (1978) Botany of the Manawatu. N.Z. Department of Scientific and Industrial Research, DSIR Information Series No. 127. E. C. Keating, Wellington, New Zealand.

Horizons Regional Council (2005) Regional wetland inventory and prioritisation project. *Horizons Regional Council Report No. 2005/EXT/615*.

- James, A.B.W. and Joy, M.K. (2008) A preliminary assessment of potential barriers to fish migration in the Manawatu River catchment, North Island, New Zealand.
  A report prepared for Horizons Regional Council. *EnviroLink Contract Ref:* 437-HZLC45.
- Lambie, J. (2008) Revised regional wetland inventory and prioritisation. *Horizons Regional Council Report No. 2008/EXT/892.*
- Maseyk, F.J.F. (2007) Past and current indigenous vegetation cover and justification for the protection of terrestrial biodiversity with the Manawatu-Wanganui
   Region: Technical report to support policy development. *Horizons Regional Council Report No. 2007/EXT/790.*

# **Appendix 1 – Environment Waikato Field Assessment Cover Form**

| Field Assessm                                                            | ent Cover l               | Form                                   |                                                |                              |                    |                                         |               |
|--------------------------------------------------------------------------|---------------------------|----------------------------------------|------------------------------------------------|------------------------------|--------------------|-----------------------------------------|---------------|
| Wadeable Hard-E                                                          | Bottomed and              | I Soft-Botton                          | ned Stream                                     | 3                            |                    |                                         |               |
| STREAM NAME:                                                             |                           |                                        | ASSESSOR:                                      |                              |                    |                                         |               |
| SITE NUMBER:                                                             | SAMPLE NUMB               | ER:                                    | DATE:                                          | TIM                          | E (NZS             | ST):                                    |               |
| GPS COORDINATES:                                                         |                           | d of reach - Easti<br>of reach - Easti | •                                              |                              | thing -<br>thing - |                                         |               |
| CHANNEL AND RIPAR                                                        |                           |                                        | INSTREAM HY                                    |                              |                    |                                         |               |
| Canopy Cover:                                                            |                           |                                        | Estimated or m                                 | easured re                   | each a             | /erage:                                 |               |
| O Open O Partly sh                                                       | naded 🔿 Signifi           | cantly shaded                          |                                                |                              |                    | •                                       |               |
| Fencing:                                                                 | Dominant Ripari           | -                                      | Stream width                                   | (active ch                   | annel)             |                                         | m             |
| O None or ineffective                                                    | O Crops etc               | O Retired vege.                        |                                                |                              | ,                  |                                         | m             |
| O One side or partial                                                    | O Pasture                 | O Native shrub                         | Stream depth                                   |                              |                    | m                                       |               |
| O Complete both sides                                                    |                           | O Native trees                         | Surface veloc                                  |                              |                    | m/sec                                   |               |
| WATER QUALITY                                                            |                           | O native acco                          |                                                |                              |                    |                                         |               |
| Temperature:                                                             | °C                        | Col                                    | nductivity:                                    | uS/cr                        | n @ 25             | 5°C                                     |               |
| Dissolved Oxygen:                                                        |                           | mg/L                                   |                                                | p =                          |                    |                                         |               |
| Turbidity: O Clear                                                       |                           | O Highly turbid                        | O Stained                                      | ) Other                      |                    |                                         |               |
| STREAM-BOTTOM SU                                                         | BSTRATA                   |                                        |                                                | <u>y e iner</u>              |                    |                                         |               |
| Compaction (inorganic<br>O assorted sizes tightly<br>O moderately packed | y packed &/or over        | lapping                                |                                                |                              |                    | tratum size<br>n to 100%)               |               |
| O mostly a loose assor                                                   | tment with little ov      |                                        | Substratum                                     | Dimen                        | sion               | Percenta                                | ae            |
| O no packing / loose a                                                   | ssortment easily m        | ioved.                                 | type                                           | (middle                      | axis)              |                                         | J -           |
| Embeddedness:<br>(% gravel-boulder partic                                | les covered by find       | endiment)                              | Bedrock                                        |                              |                    |                                         |               |
|                                                                          | O26-50% O51               |                                        | Boulder                                        | > 256r                       |                    |                                         |               |
|                                                                          |                           |                                        | Cobble                                         | >64-256                      |                    |                                         |               |
|                                                                          |                           |                                        |                                                |                              |                    |                                         |               |
| Large wood (>10 cm di<br>O<5% O5-25%                                     | ameter):<br>026-50% 051-7 | 5% _>75%                               | Gravel<br>Sand                                 | >2-64r                       |                    | · · · · - · · ·                         |               |
| Coarse Detritus (small                                                   |                           |                                        | Silt                                           | 0.004-0.0                    |                    |                                         |               |
|                                                                          | 026-50% 051-7             |                                        |                                                |                              |                    |                                         |               |
|                                                                          | 026-50% 051-7             | 5% _>75%                               | Clay                                           | <0.004                       | mm                 |                                         |               |
| INSTREAM PLANT CO<br>Filamentous Algae (>2<br>〇<5% 〇5-25%                |                           | (>3 mm thick):                         | HABITAT TYPE<br>column should s                | S SAMPL<br>sum to 100        | .ED (%<br>)%)<br>  | of effort; ea                           | ich           |
| Macrophytes:                                                             | € 26-50% € 51-7           | 5% _>75%                               | Stones:<br>Wood:                               | %                            | Riffles            | :%                                      |               |
| Mosses/Liverworts:                                                       | <b>)</b> 26-50% ()51-7    | 5% _>75%                               | Macrophytes:                                   |                              | Runs:              | %                                       |               |
| COMMENTS                                                                 |                           |                                        | NO, INVERTEB                                   |                              | ETURI              | NED:                                    |               |
|                                                                          |                           |                                        | Koura:                                         |                              |                    |                                         |               |
|                                                                          |                           |                                        | Crabs:                                         | =                            |                    |                                         |               |
|                                                                          |                           |                                        | Others (specify)                               | -                            |                    |                                         |               |
|                                                                          |                           |                                        |                                                |                              |                    |                                         |               |
|                                                                          |                           |                                        | Species of mus<br>Hyridella                    | ssei (tick)                  | 1                  | nerunio                                 |               |
|                                                                          |                           |                                        |                                                | in, indramaki BERG, NAQLIMIK |                    |                                         | Hátlaintair   |
|                                                                          |                           | - <b>1</b><br>                         | S                                              |                              | and the second     |                                         |               |
|                                                                          |                           |                                        | Shell smooth;<br>100mm long; va<br>shell shape |                              | upper              | es and ridge<br>part of shei<br>nm long | s on<br>I; up |

# **Environment Waikato Habitat Assessment Field Data Sheet**

| Qualitative Habitat As                                                                                                | ssess                                                                                           | ment                               | Field                                     | l Dat                                    | a She                       | et                                                                                                                                             |                                                                                                            |         |            |                                                                                                                                                                                                                    |                                                                         |                                            |                         |                                                   |           |         |              |              |                       |       |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|-------------------------|---------------------------------------------------|-----------|---------|--------------|--------------|-----------------------|-------|
| STREAM NAME:                                                                                                          |                                                                                                 |                                    |                                           |                                          |                             |                                                                                                                                                |                                                                                                            |         |            | SI                                                                                                                                                                                                                 | TE N                                                                    | UMB                                        | IR:                     |                                                   |           |         |              |              |                       |       |
| SAMPLE NUMBER:                                                                                                        |                                                                                                 |                                    |                                           |                                          | ASS                         | ESSC                                                                                                                                           | R:                                                                                                         |         |            | D,                                                                                                                                                                                                                 | ATE:                                                                    |                                            |                         |                                                   |           |         |              |              |                       |       |
| Habitat<br>Parameter                                                                                                  |                                                                                                 |                                    |                                           |                                          |                             |                                                                                                                                                |                                                                                                            |         | (          | Categ                                                                                                                                                                                                              | ory                                                                     |                                            |                         |                                                   |           |         |              |              |                       |       |
|                                                                                                                       |                                                                                                 | o                                  | ptim                                      | al                                       |                             |                                                                                                                                                | Subo                                                                                                       | optim   | al         |                                                                                                                                                                                                                    |                                                                         | Mar                                        | gina                    | 1                                                 |           |         |              | Poo          | л                     |       |
| 1. Riparian<br>Vegetative Zone<br>Width (score each<br>bank; determine left<br>or right side by facing<br>downstream) | <ul> <li>Bankside vegetation<br/>buffer is &gt;10m</li> <li>Continuous and<br/>dense</li> </ul> |                                    |                                           | buffer is <10m                           |                             |                                                                                                                                                | <ul> <li>Pathways present<br/>and/or stock<br/>access to stream</li> <li>Mostly healed<br/>over</li> </ul> |         |            |                                                                                                                                                                                                                    | <ul> <li>Breaks frequent</li> <li>Human activity<br/>obvious</li> </ul> |                                            |                         |                                                   |           |         |              |              |                       |       |
| Left bank                                                                                                             | 20                                                                                              | 19                                 | 18                                        | 17                                       | 16                          | 15                                                                                                                                             | 14                                                                                                         | 13      | 12         | 11                                                                                                                                                                                                                 | 10                                                                      | 9                                          | 8                       | 7                                                 | 6         | 5       | 4            | 3            | 2                     | 1     |
| Right bank                                                                                                            | 20                                                                                              | 19                                 | 18                                        | 17                                       | 16                          | 15                                                                                                                                             | 14                                                                                                         | 13      | 12         | 11                                                                                                                                                                                                                 | 10                                                                      | 9                                          | 8                       | 7                                                 | 6         | 5       | 4            | 3            | 2                     | 1     |
| Mean LB&RB                                                                                                            |                                                                                                 | 気量                                 |                                           |                                          | in a sin<br>Dagi da Bi      | 0. É 3                                                                                                                                         | dy zelek<br>Altikar                                                                                        | ek aite |            | 16-3                                                                                                                                                                                                               | 200                                                                     | 42418                                      | di se                   |                                                   | tin.      | ŝη ŝ,   |              | 64.7         |                       |       |
| 2. Vegetative<br>Protection                                                                                           |                                                                                                 | Bank<br>imme                       |                                           |                                          |                             |                                                                                                                                                | Bank                                                                                                       | ed m    | ainly      | by                                                                                                                                                                                                                 | •                                                                       | Bank                                       |                         |                                                   |           | •       | Bank         |              |                       | asses |
| (score each bank;<br>determine left or right<br>side by facing<br>downstream)                                         | •                                                                                               | plants<br>Veget<br>minim           | vege<br>, und<br>s, or i<br>pres<br>ative | etatio<br>ersto<br>non-v<br>ent<br>disru | n<br>rey<br>woody<br>iption | covered by exotic<br>forestry                                                                                                                  |                                                                                                            |         | ent<br>lic | <ul> <li>mixture of<br/>grasses/shrubs,<br/>blackberry, willow<br/>and introduced<br/>trees</li> <li>Vegetation<br/>disruption obvious</li> <li>Bare soil/closely<br/>cropped<br/>vegetation<br/>common</li> </ul> |                                                                         |                                            | ow<br>ous<br>ly         | vegetation very high     Grass heavily     grazed |           |         |              |              |                       |       |
| Left bank                                                                                                             | 20                                                                                              | 19                                 | 18                                        | 17                                       | 16                          | 15                                                                                                                                             | 14                                                                                                         | 13      | 12         | 11                                                                                                                                                                                                                 | 10                                                                      | 9                                          | 8                       | 7                                                 | 6         | 5       | 4            | 3            | 2                     | 1     |
| Right bank                                                                                                            | 20                                                                                              | 19                                 | 18                                        | 17                                       | 16                          | 15                                                                                                                                             | 14                                                                                                         | 13      | 12         | 11                                                                                                                                                                                                                 | 10                                                                      | 9                                          | 8                       | 7                                                 | 6         | 5       | 4            | 3            | 2                     | 1     |
| Mean LB&RB                                                                                                            | 2 <sup></sup> -                                                                                 |                                    | 12-5                                      | 39 B                                     | 81 <sup>2</sup> .)          |                                                                                                                                                | 지갑                                                                                                         |         | 89. j      |                                                                                                                                                                                                                    |                                                                         |                                            | 친절                      | 767?<br>Iaurut                                    | 102       | 1.<br>D | age.         | diĝis        | 22                    |       |
| 3. Bank Stability<br>(score each bank;<br>determine left of right<br>side by facing<br>downstream                     | •                                                                                               | Banks<br>Erosic<br>abser<br><5% c  | on/ba<br>it or n                          | nk fa<br>ninim                           |                             | <ul> <li>Moderately stable</li> <li>Infrequent, small<br/>areas of erosion<br/>mostly healed over</li> <li>5-30% of bank<br/>eroded</li> </ul> |                                                                                                            |         |            | 81<br>1                                                                                                                                                                                                            | unstable<br>• 30-60% of bank in                                         |                                            |                         | IS                                                | •         | 60-1    | y ero<br>00% | oded<br>of b | areas<br>ank<br>scars |       |
| Left bank                                                                                                             | 20                                                                                              | 19                                 | 18                                        | 17                                       | 16                          | 15                                                                                                                                             | 14                                                                                                         | 13      | 12         | 11                                                                                                                                                                                                                 | 10                                                                      | 9                                          | 8                       | 7                                                 | 6         | 5       | 4            | 3            | 2                     | 1     |
| Right bank                                                                                                            | 20                                                                                              | 19                                 | 18                                        | 17                                       | 16                          | 15                                                                                                                                             | 14                                                                                                         | 13      | 12         | 11                                                                                                                                                                                                                 | 10                                                                      | 9                                          | 8                       | 7                                                 | 6         | 5       | 4            | 3            | 2                     | 1     |
| Mean LB&RB                                                                                                            | 1997 (1997)<br>1997 - 1997                                                                      |                                    | 590                                       |                                          |                             |                                                                                                                                                |                                                                                                            |         | 1.1.1      |                                                                                                                                                                                                                    |                                                                         |                                            |                         |                                                   |           | 1       | 125          |              |                       | Lo(b) |
| 4. Channel<br>sinuousity                                                                                              |                                                                                                 | Bends<br>strear<br>times<br>was ir | n leng<br>longe                           | gth 3<br>er tha                          | -4<br>in if it              | <ul> <li>Bends Increase the<br/>stream length 2-3<br/>times longer than if<br/>was in a straight lin</li> </ul>                                |                                                                                                            |         |            | -3<br>an if it                                                                                                                                                                                                     | •                                                                       | Bend<br>the si<br>1-2 ti<br>than<br>straig | trean<br>mes<br>if it w | long<br>as in                                     | gth<br>er | •       | Cha          | nnel         | strai                 | ght   |
| SCORE                                                                                                                 | 20                                                                                              | 19                                 | 19                                        | 17                                       | 16                          | 15                                                                                                                                             | 14                                                                                                         | 13      | 12         | 11                                                                                                                                                                                                                 | 10                                                                      | 9                                          | 8                       | 7                                                 | 6         | 5       | 4            | 3            | 2                     | 1     |

SUBTOTAL : \_\_\_\_\_

|                                          | omed continued                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Habitat<br>Parameter                     |                                                                                                                                                                                                                                                                                                   | Category                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                     |
|                                          | Optimal                                                                                                                                                                                                                                                                                           | Suboptimal Marginal                                                                                                                                                                                                                                                                                                                                     | Poor                                                                                                                                                                                                                                                |
| 5. Channel<br>Alteration                 | <ul> <li>Changes to<br/>channel/dredging<br/>absent or minimal</li> <li>Stream with normal<br/>pattern</li> </ul>                                                                                                                                                                                 | <ul> <li>Some changes to<br/>channel/dredging</li> <li>Evidence of past<br/>channel/dredging</li> <li>Recent<br/>channel/dredging not<br/>present</li> <li>Channel<br/>changes/dredging<br/>extensive</li> <li>Embankments or<br/>shoring structures<br/>present on both banks</li> <li>40 to 80% of reach<br/>channelised and<br/>disrupted</li> </ul> | <ul> <li>Banks shored<br/>with gabion or<br/>cement</li> <li>&gt;80% of the<br/>stream reach<br/>channelised and<br/>disrupted.</li> <li>Instream habitat<br/>altered or absent</li> </ul>                                                          |
| SCORE                                    | 20 19 18 17 16                                                                                                                                                                                                                                                                                    | 15 14 13 12 11 10 9 8 7 6                                                                                                                                                                                                                                                                                                                               | 54321                                                                                                                                                                                                                                               |
| 6. Sediment<br>Deposition                | <ul> <li>Little/no islands or point<br/>bars present</li> <li>&lt;20% of the bottom<br/>affected by sediment<br/>deposition</li> </ul>                                                                                                                                                            | <ul> <li>New increase in bar<br/>formation, mostly<br/>from gravel, sand or<br/>fine sediment</li> <li>20-50% of the bottom<br/>affected;</li> <li>Slight deposition in<br/>pools</li> <li>Sediment deposits at<br/>obstructions, and bends</li> </ul>                                                                                                  | <ul> <li>Heavy deposits<br/>of fine material</li> <li>Increased bar<br/>development</li> <li>&gt;80% of the<br/>bottom changing<br/>frequently</li> <li>Pools almost<br/>absent due to<br/>sediment<br/>deposition</li> </ul>                       |
| SCORE                                    | 20 19 18 17 16                                                                                                                                                                                                                                                                                    | 15 14 13 12 11 10 9 8 7 6                                                                                                                                                                                                                                                                                                                               | 54321                                                                                                                                                                                                                                               |
| 7. Pool Variability                      | <ul> <li>Pools evenly mixed</li> <li>Large/shallow,<br/>Large/deep,<br/>Small/shallow,<br/>Small/deep</li> </ul>                                                                                                                                                                                  | <ul> <li>Majority of pools<br/>large/deep</li> <li>Very few shallow<br/>pools</li> </ul>                                                                                                                                                                                                                                                                | <ul> <li>Majority of pools<br/>small/shallow</li> </ul>                                                                                                                                                                                             |
| SCORE                                    | 20 19 18 17 16                                                                                                                                                                                                                                                                                    | 15 14 13 12 11 10 9 8 7 6                                                                                                                                                                                                                                                                                                                               | 54321                                                                                                                                                                                                                                               |
| 8. Abundance and<br>Diversity of Habitat | <ul> <li>&gt;50% substrate<br/>favourable for<br/>invertebrate<br/>colonisation and wide<br/>variety of woody debris<br/>riffles, root mats</li> <li>Snags/ submerged<br/>logs/ undercut banks/<br/>cobbles provides<br/>abundant fish cover</li> <li>Must not be new or<br/>transient</li> </ul> | <ul> <li>Shagssubmerged<br/>logs/undercut<br/>banks/cobbles</li> <li>Fish cover common</li> <li>Moderate variety of<br/>habitat types. Can<br/>consist of some new<br/>material</li> <li>60-90% substrate easily<br/>moved by foot</li> <li>Woody debris rare or<br/>may be smothered by<br/>sediment</li> </ul>                                        | <ul> <li>&lt;10% substrate<br/>favourable for<br/>invertebrate<br/>colonisation</li> <li>Fish cover rare<br/>or absent</li> <li>Substrate<br/>unstable or<br/>lacking</li> <li>Stable habitats<br/>lacking or limited<br/>to macrophytes</li> </ul> |
| SCORE                                    | 20 19 18 17 16                                                                                                                                                                                                                                                                                    | 15 14 13 12 11 10 9 8 7 6                                                                                                                                                                                                                                                                                                                               | 54321                                                                                                                                                                                                                                               |
| 9. Periphyton                            | <ul> <li>Periphyton not evident<br/>on hand held<br/>substrates<br/>(macrophytes, wood<br/>etc) or fine sediments</li> </ul>                                                                                                                                                                      | Periphyton not visible     on substrates but     obvious to touch     Substrates                                                                                                                                                                                                                                                                        | <ul> <li>Periphyton<br/>obvious and<br/>prolific</li> <li>&gt;20% cover of<br/>available<br/>substrates</li> </ul>                                                                                                                                  |
| SCORE                                    | 20 19 18 17 16                                                                                                                                                                                                                                                                                    | 15 14 13 12 11 10 9 8 7 6                                                                                                                                                                                                                                                                                                                               | 54321                                                                                                                                                                                                                                               |
| Total Score                              | NB: Use only means of LB a                                                                                                                                                                                                                                                                        | nd RB values                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                     |

Page 20

Doc #943216

÷.

# **Appendix 2 – In-Stream Structure Fish Passage Evaluation sheet**

| Date:                                       | Assessor:                                |
|---------------------------------------------|------------------------------------------|
| NZMS 260 Map:                               | Altitude:                                |
| GPS co-ordinates: E                         | N Accuracy                               |
| Site address/location:                      |                                          |
| Stream name:                                | Catchment:                               |
| <b>Stream flow at inspection:</b> Low       | Normal High                              |
| Structure form: Culvert Concrete sl         | ab ford with culverts Dam/weir           |
| Culvert type: Pipe Box Arch                 | Ford Other                               |
| Construction: Concrete Steel Corrug         | gated iron Plastic Other                 |
| Gradient compared to stream bed:            | Same Steeper Flatter                     |
| <b>Bed material in culvert:</b> Yes         | No                                       |
| Typical Bed Material (%): Mud               | Sand                                     |
| Gravel Cobble                               | Boulders                                 |
| Culvert dimensions (m): Length              | Diameter Velocity(s)                     |
| Outlet water depth Inlet water dep          | th Sediment depth                        |
| Longitudinal cross section: Inlet: Flat     | Pooled Perched                           |
| Outlet: Flat                                | Pooled Perched                           |
| Water fall estimate for perched culverts (i | f multiple culverts note maximums only): |
| Height (m) Undercut length (m               | )                                        |
| Likely severity of fish passage restriction | on:                                      |
| None/minimal Low flows                      | Most flows High flows                    |

## FISH PASSAGE EVALUATION SHEET FOR IN-STREAM STUCTURES

| Stream bed level relative to culvert base: Same Above Below                                  |
|----------------------------------------------------------------------------------------------|
| Stream width relative to culvert: Same Narrower Wider                                        |
| Stream alignment: Straight in-out Straight in-curved out Curved in-straight out              |
| Bank erosion at culvert ends: Yes No                                                         |
| <b>Photos:</b><br>Outlet looking upstream with culvert occupying 30-50% of photograph: taken |
| Outlet looking upstream: taken Inlet looking downstream: taken                               |
| Other comments:                                                                              |

| Date       | Stream/Lake                        | Location                                                   | Easting | Northing | Canopy cover  |
|------------|------------------------------------|------------------------------------------------------------|---------|----------|---------------|
| 16/12/2008 | Lake Koputara 1,2,3 and Lake Omanu | Between Lakes 2 and 3                                      | 2701160 | 6082850  | Open          |
| 17/12/2008 |                                    | Between Lake 3 and Omanu                                   | 2701175 | 6081950  | Open          |
| 17/12/2008 |                                    | Just DS of Lake Omanu - Whitebait Creek                    | 2700660 | 6081140  | Open          |
| 18/12/2008 |                                    | Mather farm near piggery - Whitebait Creek                 | 2700415 | 6080780  | Open          |
| 17/12/2008 |                                    | DS of Palmer Rd culvert - Whitebait Creek                  | 2700170 | 6080225  | Partly shaded |
| 18/12/2008 |                                    | Mather farm pine trees near Foxton Beach - Whitebait Creek | 2700160 | 6079900  | Partly shaded |
| 18/12/2008 |                                    | Just US of Seabury Ave - Whitebait Creek                   | 2700040 | 6079550  | Open          |
| 17/12/2008 | Lake Papaitonga (Waiwiri Stream)   |                                                            | 2696710 | 6060520  | Open          |
| 17/12/2008 |                                    | On Bryants farm                                            | 2695800 | 6061090  | Open          |
| 17/12/2008 |                                    | Ryan farm                                                  | 2694230 | 6061805  | Open          |
| 16/12/2008 | Lake Horowhenua (Hokio Stream)     | ~360 m DS of Lake outlet weir opp. cemetery                | 2699010 | 6064570  | Open          |
| 16/12/2008 |                                    | DS of Moutere Rd bridge                                    | 2698675 | 6064835  | Partly shaded |
| 16/12/2008 |                                    | Opposite tip entrance                                      | 2697375 | 6064725  | Partly shaded |
| 16/12/2008 |                                    | Just outside Hokio Beach town                              | 2696650 | 6065060  | Open          |
| 16/12/2008 |                                    | Hokio Beach footbridge by old school                       | 2695390 | 6065825  | Partly shaded |
| 18/12/2008 | Ohau Loop                          | Ohau Loop ~100 m DS from outlet culvert                    | 2693238 | 6058543  | Open          |
| 18/12/2008 | Te Hakari Wetlands                 | Te Hakari at lake outlet                                   | 2692895 | 6057850  | Open          |
| 18/12/2008 |                                    | Te Hakari just DS of 2nd culvert                           | 2692750 | 6057965  | Open          |
| 22/12/2008 | Ohau Dune Lakes                    | Ohau Dune Lakes at US most crossing                        | 2692475 | 6056520  | Open          |
| 22/12/2008 |                                    | Ohau Dune Lakes at ~50 m US of Waikawa Stream              | 2692155 | 6056125  | Open          |
| 14/01/2009 | Lake Koputara                      | Koputara behind Sexton house                               | 2701300 | 6086610  | Open          |
| 14/01/2009 |                                    | Koputara near raceway bend                                 | 2700670 | 6086530  | Open          |
| 14/01/2009 |                                    | Koputara at furtherst DS I could drive                     | 2700325 | 6086730  | Open          |
| 14/01/2009 |                                    | Koputara entrance to pine forest                           | 2699610 | 6087180  | Partly shaded |
| 16/01/2009 | Lake Kaikokopu                     | Kaikokopu at Pedersen boundary                             | 2701524 | 6089880  | Open          |

# **Appendix 3 – Field Assessment Cover Form Data**

| 16/01/2009<br>16/01/2009<br>16/01/2009 |                            | Kaikokopu bridge DS of forestry block<br>Kaikokopu just DS of town entrance weir<br>Kaikokopu US most in MDC reserve | 2700785<br>2700425<br>2700125 | 6090250<br>6090425<br>6090600 | Open<br>Partly shaded<br>Partly shaded |
|----------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|----------------------------------------|
| 21/01/2009                             | Omanuka & Pukepuke Lagoons | Omanuka - Pukepuke                                                                                                   | 2704050                       | 6095540                       | Open                                   |
| 21/01/2009                             |                            | Omanuka - Pukepuke on Jaimeson farm                                                                                  | 2703825                       | 6095250                       | Open                                   |
| 15/01/2009                             |                            | Pukepuke at 1st bridge DS from weir                                                                                  | 2701335                       | 6094140                       | Open                                   |
| 15/01/2009                             |                            | Pukepuke just DS of broken double culvert                                                                            | 2700440                       | 6094615                       | Open                                   |
| 15/01/2009                             |                            | Pukepuke just US of iron bridge                                                                                      | 2699890                       | 6094950                       | Open                                   |
| 22/01/2009                             | Forest Rd Wetlands         | Forest Rd Wetlands US most on Nitschke Farm                                                                          | 2701631                       | 6102800                       | Partly shaded                          |
| 22/01/2009                             |                            | Forest Rd Wetlands at Nitschke - Ferry Farms boundary                                                                | 2701620                       | 6101925                       | Partly shaded                          |
| 22/01/2009                             |                            | At Ferry Farms main crossing by new shed                                                                             | 2700850                       | 6101285                       | Open                                   |
| 22/01/2009                             |                            | Forest Rd Wetlands just DS of old Ferry Farms shed                                                                   | 2701130                       | 6100875                       | Open                                   |
| 22/01/2009                             |                            | Forest Rd Wetlands just US of road bridge                                                                            | 2701270                       | 6100115                       | Open                                   |
| 23/01/2009                             | Pukemarama Lagoon          | Pukemarama between ford and culvert 6                                                                                | 2705700                       | 6099385                       | Open                                   |
| 23/01/2009                             |                            | Pukemarama on Rangitikei floodplain bush                                                                             | 2704843                       | 6100135                       | Significantly shaded                   |
| 28/01/2009                             | Knottingly Swamp           | Knottingly Swamp just DS of lake                                                                                     | 2698585                       | 6113125                       | Open                                   |
| 28/01/2009                             |                            | Knottingly Swamp between 1st & 2nd culverts DS of lake                                                               | 2698085                       | 6113485                       | Open                                   |
| 28/01/2009                             |                            | Knottingly Swamp at derelict footbridge DS of 3rd culvert                                                            | 2697110                       | 6113830                       | Open                                   |
| 27/01/2009                             | Lake Koitiata              | Koitiata outlet just US of 1st culvert DS of lake                                                                    | 2696785                       | 6118330                       | Partly shaded                          |
| 27/01/2009                             |                            | Koitiata DS of 2nd culvert DS of lake                                                                                | 2696690                       | 6117895                       | Partly shaded                          |
| 27/01/2009                             |                            | Koitiata just US of 2nd footbridge                                                                                   | 2695710                       | 6117420                       | Partly shaded                          |
| 27/01/2009                             |                            | Koitiata just DS of 3rd culvert DS of lake                                                                           | 2696410                       | 6117575                       | Partly shaded                          |
| 29/01/2009                             | Artillerie Swamp           | Artillerie Swamp at exit of raupo area just DS of lake                                                               | 2696837                       | 6115935                       | Significantly shaded                   |
| 29/01/2009                             |                            | Artillerie Swamp DS of 1st culvert                                                                                   | 2696445                       | 6115760                       | Open                                   |
| 15/05/2009                             | Lake Kaitoke               | Kaitoke just DS of lake level weir                                                                                   | 2686350                       | 6135865                       | Open                                   |
| 15/05/2009                             |                            | Kaitoke in 1st trees DS of lake                                                                                      | 2685958                       | 6135920                       | Partly shaded                          |
| 15/05/2009                             |                            | Kaitoke with trees on both sides                                                                                     | 2685280                       | 6136000                       | Significantly shaded                   |
| 15/05/2009                             |                            | Kaitoke at exit from last patch of pine trees                                                                        | 2684569                       | 6135750                       | Open                                   |

| 15/05/2009 |                             | Kaitoke adjacent to Wanganui airport | 2683693 | 6135395 | Open                 |
|------------|-----------------------------|--------------------------------------|---------|---------|----------------------|
| 18/05/2009 | Lake Waipu                  | Waipu in pine forest just DS of lake | 2694056 | 6126330 | Partly shaded        |
| 18/05/2009 |                             | Waipu in iron floc zone              | 2693727 | 6125880 | Partly shaded        |
| 18/05/2009 |                             | Waipu at main vehicle crossing       | 2693375 | 6125812 | Open                 |
| 18/05/2009 |                             | Waipu ~100m US of Turakina River     | 2693169 | 6125630 | Open                 |
| 19/05/2009 | Lake Wiritoa and Lake Pauri | Wiritoa in 1st pine trees DS of lake | 2687730 | 6134470 | Significantly shaded |
| 19/05/2009 |                             | -                                    | 2686760 | 6134720 | Open                 |
| 19/05/2009 |                             |                                      | 2685675 | 6134680 | Open                 |
| 19/05/2009 |                             |                                      | 2683675 | 6135150 | Open                 |

| Easting | Northing | Fencing             | Dominant riparian<br>vegetation          | Stream<br>width<br>(m) | Stream<br>depth<br>(m) | Surface<br>velocity<br>(m/sec) | Turbidity            | Embeddedness<br>% | Substratum<br>type %          |
|---------|----------|---------------------|------------------------------------------|------------------------|------------------------|--------------------------------|----------------------|-------------------|-------------------------------|
| 2701160 | 6082850  | None or ineffective | Pasture                                  | ~ 4                    | < 0.5                  | 0                              | slighty turbid       | <5                | sand 100                      |
| 2701175 | 6081950  | Complete both sides | Pasture                                  | ~ 3                    | > 1                    | 0                              | no open water to see | <5                | sand 100                      |
| 2700660 | 6081140  | One side or partial | Pasture                                  | ~ 4                    | > 1                    | < 0.1                          | slighty turbid       | <5                | sand 100                      |
| 2700415 | 6080780  | One side or partial | Pasture/Exotic trees                     | ~ 6                    | ~ 0.4                  | < 0.1                          | clear                | <5                | sand 100                      |
| 2700170 | 6080225  | Complete both sides | Exotic trees                             | ~ 3                    | ~ 0.3                  | < 0.1                          | clear                | <5                | sand 100                      |
| 2700160 | 6079900  | Complete both sides | Exotic trees                             | ~ 2.5                  | ~ 0.3                  | ~ 0.2                          | clear                | <5                | sand 100                      |
| 2700040 | 6079550  | One side or partial | Pasture/urban mowed berm                 | 3                      | < 0.5                  | < 0.1                          | clear                | <5                | sand 100                      |
| 2696710 | 6060520  | One side or partial | Pasture                                  | 4                      | > 1                    | 0                              | slightly turbid      | <5                | sand 100                      |
| 2695800 | 6061090  | One side or partial | Pasture                                  | ~ 2                    | 0.5                    | < 0.1                          | slightly turbid      | <5                | sand 100                      |
| 2694230 | 6061805  | One side or partial | Pasture                                  | ~ 3                    | no<br>access           | 0                              | clear                | <5                | sand 100                      |
| 2699010 | 6064570  | None or ineffective | Pasture                                  | ~ 6                    | > 1                    | < 0.1                          | slightly turbid      | <5                | sand 100                      |
| 2698675 | 6064835  | Complete both sides | Exotic trees                             | ~ 4                    | ~ 0.4                  | > 0.5                          | slightly turbid      | 5 - 25%           | 40 cobble, 50 gravel, 10 sand |
| 2697375 | 6064725  | One side or partial | Pasture/Exotic trees                     | ~ 6                    | > 1                    | < 0.1                          | slightly turbid      | <5                | sand 100                      |
| 2696650 | 6065060  | Complete both sides | Exotic trees, shrubs, raupo, long grass. | ~ 5                    | > 1                    | < 0.1                          | slightly turbid      | <5                | sand 100                      |
| 2695390 | 6065825  | One side or partial | Exotic trees, retired veg                | ~ 7                    | ~ 1                    | > 0.5                          | slightly turbid      | <5                | sand 100                      |
| 2693238 | 6058543  | Complete both sides | Retired veg/pasture                      | ~ 8                    | > 1                    | 0                              | no open water to see | <5                | sand 100                      |
| 2692895 | 6057850  | Complete both sides | Retired veg, long<br>grass               | ~ 3                    | ~ 0.5                  | 0                              | no open water to see | <5                | sand 100                      |
| 2692750 | 6057965  | Complete both sides | Exotic trees                             | 2                      | ~ 0.15                 | < 0.1                          | slightly turbid      | <5                | sand 100                      |
| 2692475 | 6056520  | One side or partial | Retired veg, rank<br>grass, scrub        | ~ 3                    | > 0.5                  | < 0.1                          | clear                | <5                | sand 100                      |
| 2692155 | 6056125  | None or ineffective | Pasture (rough                           | ~ 2                    | ~ 0.5                  | < 0.1                          | clear                | <5                | sand 100                      |
|         |          |                     | × 8                                      |                        |                        |                                |                      |                   |                               |

### Field Assessment Cover Form Data continued......

#### fescue)

| 2701300 | 6086610 | One side or partial | Pasture                          | ~5  | ~1.7  | 0        | no open water to see | <5 | sand 100 |
|---------|---------|---------------------|----------------------------------|-----|-------|----------|----------------------|----|----------|
| 2700670 | 6086530 | One side or partial | Pasture                          | 3   | 0.2   | 0        | slightly turbid      | <5 | sand 100 |
| 2700325 | 6086730 | One side or partial | Pasture                          | 3   | 0.15  | 0        | no open water to see | <5 | sand 100 |
| 2699610 | 6087180 | None or ineffective | Exotic trees                     | 2   | 0.27  | 0        | slightly turbid      | <5 | sand 100 |
| 2701524 | 6089880 | Complete both sides | Pasture and scrub                | 5   | ~0.4  | 0.05     | slightly turbid      | <5 | sand 100 |
| 2700785 | 6090250 | One side or partial | Exotic trees, retired veg        | 5   | ~0.3  | ~0.15    | slightly turbid      | <5 | sand 100 |
| 2700425 | 6090425 | One side or partial | Pasture, native and exotic shrub | 5   | ~0.35 | 0.1      | clear                | <5 | sand 100 |
| 2700125 | 6090600 | Complete both sides | Pasture, exotic trees            | 3   | ~0.3  | 0.05     | clear                | <5 | sand 100 |
| 2704050 | 6095540 | Complete both sides | Pasture                          | 3   | 0.5   | 0        | slightly turbid      | <5 | sand 100 |
| 2703825 | 6095250 | Complete both sides | Pasture                          | 2   | ~ 0.5 | 0        | slightly turbid      | <5 | sand 100 |
| 2701335 | 6094140 | One side or partial | Pasture                          | 3   | 0.14  | 0        | slightly turbid      | <5 | sand 100 |
| 2700440 | 6094615 | None or ineffective | Pasture, exotic trees            | 3   | 0.52  | 0        | slightly turbid      | <5 | sand 100 |
| 2699890 | 6094950 | Complete both sides | Pasture, exotic trees            | 4   | 0.1   | ~0.15    | clear                | <5 | sand 100 |
| 2701631 | 6102800 | One side or partial | Crops, exotic trees              | 5   | 0.5   | 0        | stained              | <5 | sand 100 |
| 2701620 | 6101925 | One side or partial | Crops, pasture,<br>exotic trees  | 5   | 0.7   | 0        | stained              | <5 | sand 100 |
| 2700850 | 6101285 | Complete both sides | Pasture                          | 6   | ~0.5  | 0        | slightly turbid      | <5 | sand 100 |
| 2701130 | 6100875 | Complete both sides | Pasture, retired veg             | 6   | 0.75  | 0        | slightly turbid      | <5 | sand 100 |
| 2701270 | 6100115 | Complete both sides | Pasture                          | 4   | ~1    | 0        | highly turbid        | <5 | sand 100 |
| 2705700 | 6099385 | None or ineffective | Pasture                          | 1.5 | 0.3   | 0        | stained              | <5 | sand 100 |
| 2704843 | 6100135 | None or ineffective | Exotic trees                     | 3   | 0.1   | 0 - 0.05 | clear                | <5 | sand 100 |
| 2698585 | 6113125 | None or ineffective | Exotic trees                     | 2   | 0.2   | 0        | no open water to see | <5 | sand 100 |
| 2698085 | 6113485 | None or ineffective | Exotic trees (small)             | 3   | 0     | 0        | dry                  | <5 | sand 100 |
| 2697110 | 6113830 | None or ineffective | Exotic trees                     | 2   | 0     | 0        | dry                  | <5 | sand 100 |
| 2696785 | 6118330 | One side or partial | Exotic trees                     | 2.5 | 0     | 0        | dry                  | <5 | sand 100 |
| 2696690 | 6117895 | None or ineffective | Exotic trees, retired            | 1.8 | 0     | 0        | dry                  | <5 | sand 100 |
|         |         |                     |                                  |     |       |          |                      |    |          |

|         |         |                     | veg                              |     |              |       |                      |    |          |
|---------|---------|---------------------|----------------------------------|-----|--------------|-------|----------------------|----|----------|
| 2695710 | 6117420 | None or ineffective | Exotic trees                     | 2   | 0.25         | 0     | slightly turbid      | <5 | sand 100 |
| 2696410 | 6117575 | None or ineffective | Exotic trees                     | 2   | 0            | 0     | dry                  | <5 | sand 100 |
| 2696837 | 6115935 | None or ineffective | Exotic trees                     | 2   | ~0.07        | ~0.1  | clear                | <5 | sand 100 |
| 2696445 | 6115760 | None or ineffective | Exotic trees                     | ~2  | no<br>access | 0     | no open water to see | <5 | sand 100 |
| 2686350 | 6135865 | None or ineffective | Pasture                          | 4   | 0.45         | ~0.3  | highly turbid        | <5 | sand 100 |
| 2685958 | 6135920 | One side or partial | Exotic trees, retired vegetation | ~3  | ~0.3         | 0.3   | highly turbid        | <5 | sand 100 |
| 2685280 | 6136000 | Complete both sides | Exotic trees                     | 3   | 0.26         | ~0.3  | slightly turbid      | <5 | sand 100 |
| 2684569 | 6135750 | None or ineffective | Retired vegetation<br>and scrub  | 3   | 0.4          | ~0.4  | slightly turbid      | <5 | sand 100 |
| 2683693 | 6135395 | None or ineffective | Pasture                          | 3   | 0.45         | 0.4   | slightly turbid      | <5 | sand 100 |
| 2694056 | 6126330 | None or ineffective | Exotic trees                     | 5   | >0.5         | 0     | highly turbid        | <5 | sand 100 |
| 2693727 | 6125880 | None or ineffective | Exotic trees, pasture            | 1.5 | 0.12         | ~0.01 | clear                | <5 | sand 100 |
| 2693375 | 6125812 | None or ineffective | Pasture                          | 4   | 0.15         | 0     | clear                | <5 | sand 100 |
| 2693169 | 6125630 | None or ineffective | Pasture, exotic trees            | 1   | ~0.25        | 0.1   | clear                | <5 | sand 100 |
| 2687730 | 6134470 | None or ineffective | Exotic trees                     | 2   | 0            | 0     | dry                  | <5 | sand 100 |
| 2686760 | 6134720 | None or ineffective | Pasture                          | ~3  | 0            | 0     | dry                  | <5 | sand 100 |
| 2685675 | 6134680 | None or ineffective | Pasture                          | 2   | 0.1          | 0     | clear                | <5 | sand 100 |
| 2683675 | 6135150 | None or ineffective | Pasture and scrub                | 2.5 | 0.15         | ~0.2  | clear                | <5 | sand 100 |

|         |          |                    | rganic Mat              | erial                         | Inst                 | ream plant cove | r %                   | Comments                                                                                                                          |
|---------|----------|--------------------|-------------------------|-------------------------------|----------------------|-----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Easting | Northing | %<br>Large<br>wood | %<br>Coarse<br>detritus | % Fine<br>organic<br>deposits | Filamentous<br>algae | Macrophytes     | Mosses/<br>Liverworts |                                                                                                                                   |
| 2701160 | 6082850  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Totally overgrown with parsnip weed, water surface not visible                                                                    |
| 2701175 | 6081950  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Channel between Koputara 3 and Omanu. Covered in duckweed, no oper water. Raupo on right bank.                                    |
| 2700660 | 6081140  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Pine hedge on left bank                                                                                                           |
| 2700415 | 6080780  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Owners refer to it as "Whitebait Creek". No culverts on Mathers Ds of Lake Omanu outlet. The 3 on aerials are bridges.            |
| 2700170 | 6080225  | <5                 | <5                      | <5                            | <5                   | 26 - 50         | <5                    | Shallow sandy channel. School of ~100 juvenile inanga sighted swimmin<br>US                                                       |
| 2700160 | 6079900  | <5                 | <5                      | <5                            | <5                   | 26 - 50         | <5                    | Amongst a patch of pine trees. More open water than other Mather farm sites.                                                      |
| 2700040 | 6079550  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Water surface totally obscured by wild parsnip.                                                                                   |
| 2696710 | 6060520  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Pasture                                                                                                                           |
| 2695800 | 6061090  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Grass and some flax on edges                                                                                                      |
| 2694230 | 6061805  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Grass and some flax on edges. Wild parsnip chokes channel. Just Ds of Levin poo land discharge forest.                            |
| 2699010 | 6064570  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Non-wadeable. Covered in macrophytes. Can't see stream bottom.                                                                    |
| 2698675 | 6064835  | <5                 | <5                      | 5 - 25                        | <5                   | <5              | <5                    | In "canyon". Quite swfit with hard substrata. Very different to all other Hokio sites visited.                                    |
| 2697375 | 6064725  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Can't access stream side. Patchy willows, raupo, rank long grass and bracken. Minimal flow visible.                               |
| 2696650 | 6065060  | <5                 | <5                      | <5                            | <5                   | 51 - 75         | <5                    | Murky, raupo, small willow, rank long grass. Right next to road.                                                                  |
| 2695390 | 6065825  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Failrly swift. Abundant macrophytes mostly Potamogeton sp. Some riparian pines, willows, cabbage trees, flax and rank long grass. |
| 2693238 | 6058543  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Pond conditions. Choked with reeds, wild parsnip. Any open water covered in duck weed. Raupo in channel DS                        |
| 2692895 | 6057850  | <5                 | <5                      | <5                            | <5                   | >75             | <5                    | Overgrown with rushes, duckweed covers any open areas.                                                                            |
| 2692750 | 6057965  | >75                | 5 - 25                  | <5                            | <5                   | 26 - 50         | <5                    | Very near Ohau estuary. Wood possibly shunted US by storms and/or hig tides.                                                      |

### Field Assessment Cover Form Data continued......

| 2692475 | 6056520 | <5         | <5     | <5 | <5      | >75     | <5 | Raupo swamp just upstream                                                                                                 |
|---------|---------|------------|--------|----|---------|---------|----|---------------------------------------------------------------------------------------------------------------------------|
| 2692155 | 6056125 | <5         | 5 - 25 | <5 | <5      | >75     | <5 | Paddock of very rough pasture (fescue). Dozens of inanga seen.                                                            |
| 2701300 | 6086610 | <5         | <5     | <5 | <5      | >75     | <5 | No open water. Macrophytes and duckweed.                                                                                  |
| 2700670 | 6086530 | <5         | <5     | <5 | 5 - 25  | >75     | <5 | Minimal open water. Stock have access along cattle race. Evidence of channel clearing/dredging.                           |
| 2700325 | 6086730 | <5         | <5     | <5 | <5      | >75     | <5 | Totally choked with wild parsnip                                                                                          |
| 2699610 | 6087180 | <5         | <5     | <5 | <5      | >75     | <5 | Totally overgrown by wild parsnip. Channel narrows.                                                                       |
| 2701524 | 6089880 | <5         | <5     | <5 | 5 - 25  | 26 - 50 | <5 | Shallow and sluggish with a clear sandy bottom visible.                                                                   |
| 2700785 | 6090250 | <5         | <5     | <5 | 26 - 50 | >75     | <5 | Mostly covered in duckweed. Open water has visible flow.                                                                  |
| 2700425 | 6090425 | <5         | <5     | <5 | 26 - 50 | 51 - 75 | <5 | After weir, the stream resumes sluggish nature. Duckweed abundant.<br>Some patches of open water with clear sand visible. |
| 2700125 | 6090600 | <5         | <5     | <5 | 26 - 50 | 26 - 50 | <5 | Bits of junk instream (i.e. couch, office chair, wooden pallet, corrugated iron)                                          |
| 2704050 | 6095540 | <5         | <5     | <5 | <5      | >75     | <5 | Overgrown, minimal openwater.                                                                                             |
| 2703825 | 6095250 | <5         | <5     | <5 | <5      | >75     | <5 | Just US of boardwalk to little pond on Jaimeson farm. Choked with macrophytes.                                            |
| 2701335 | 6094140 | <5         | <5     | <5 | <5      | >75     | <5 | No visible water movement. No open water, lots of duckweed and macrophytes.                                               |
| 2700440 | 6094615 | <5         | <5     | <5 | <5      | >75     | <5 | Choked with macrophytes.                                                                                                  |
| 2699890 | 6094950 | <5         | <5     | <5 | 26 - 50 | 26 - 50 | <5 | More open water than US. Flow visible. Schools of inanga abundant. Wild parsnip along edges.                              |
| 2701631 | 6102800 | <5         | <5     | <5 | <5      | >75     | <5 | Very little open water. Lots of duckweed and wild parsnip.                                                                |
| 2701620 | 6101925 | <5         | <5     | <5 | <5      | >75     | <5 | Choked with wild parsnip and duckweed. Orange scum on surface.                                                            |
| 2700850 | 6101285 | <5         | <5     | <5 | <5      | >75     | <5 | Mostly covered in wild parsnip and duckweed.                                                                              |
| 2701130 | 6100875 | <5         | <5     | <5 | <5      | >75     | <5 | Some open water. Some parts choked by wild parsnip.                                                                       |
| 2701270 | 6100115 | <5         | <5     | <5 | <5      | >75     | <5 | Fair bit of open water but murky and can't see bottom. Duckweed abundant.                                                 |
| 2705700 | 6099385 | <5         | <5     | <5 | <5      | >75     | <5 | Filled with pasture grass right across channel. No fences. First wetted channel DS of lake.                               |
| 2704843 | 6100135 | 26 -<br>50 | 5 - 25 | <5 | <5      | 5 - 25  | <5 | Willow, toitoi, blackberry. Difficult veg to move through with some toitoi thickets. Abundant Potamopyrgus and Amphipoda. |

| 2698585 | 6113125 | <5     | <5     | <5 | <5     | >75     | <5 | Channel totally choked with macrophytes, especially wild parsnip.                                          |
|---------|---------|--------|--------|----|--------|---------|----|------------------------------------------------------------------------------------------------------------|
| 2698085 | 6113485 | <5     | <5     | <5 | <5     | >75     | <5 | Dry. Channel choked with wild parsnip.                                                                     |
| 2697110 | 6113830 | <5     | <5     | <5 | <5     | >75     | <5 | Dry. Channel totally covered in wild parsnip and grasses.                                                  |
| 2696785 | 6118330 | <5     | 5 - 25 | <5 | <5     | <5      | <5 | Dry. Channel filled with grass, dock and other broadleaf herbage.                                          |
| 2696690 | 6117895 | <5     | 5 - 25 | <5 | <5     | <5      | <5 | Dry. Channel grassed. Next to some tussock in a clearing.                                                  |
| 2695710 | 6117420 | <5     | <5     | <5 | <5     | >75     | <5 | Channel choked with wild parsnip.                                                                          |
| 2696410 | 6117575 | <5     | <5     | <5 | <5     | <5      | <5 | Dry. Channel grass and bare sand.                                                                          |
| 2696837 | 6115935 | <5     | <5     | <5 | <5     | <5      | <5 | Covered in orange scum. Maybe iron floc. Shaded by exotic trees. Inanga sighted.                           |
| 2696445 | 6115760 | <5     | <5     | <5 | <5     | >75     | <5 | Totally covered in wild parsnip. Too thick to measure depth.                                               |
| 2686350 | 6135865 | <5     | <5     | <5 | <5     | >75     | <5 | Unfenced. Stock trampling evident. Stock keep macrophytes eaten down.                                      |
| 2685958 | 6135920 | <5     | <5     | <5 | <5     | 51-75   | <5 | A few patches of small willows.                                                                            |
| 2685280 | 6136000 | 5 - 25 | 5 - 25 | <5 | <5     | <5      | <5 | Pine trees both sides. Clear sandy bottom.                                                                 |
| 2684569 | 6135750 | <5     | <5     | <5 | <5     | 26 - 50 | <5 | Watercress and grass in channel.                                                                           |
| 2683693 | 6135395 | <5     | <5     | <5 | <5     | 26 - 50 | <5 | Gorse and lupin patches in riparian zone.                                                                  |
| 2694056 | 6126330 | <5     | <5     | <5 | <5     | 51 - 75 | <5 | Patches of open water and duckweed.                                                                        |
| 2693727 | 6125880 | <5     | <5     | <5 | <5     | <5      | <5 | Few bits of grass in iron floc filled channel.                                                             |
| 2693375 | 6125812 | <5     | <5     | <5 | <5     | >75     | <5 | Wide and shallow. Very little open water mostly covered in grass, duckweed and watercress.                 |
| 2693169 | 6125630 | <5     | <5     | <5 | 5 - 25 | >75     | <5 | Start of channelised section before entering Turakina River. US is a wide (~10m) indistinct boggy channel. |
| 2687730 | 6134470 | 5 - 25 | >75    | <5 | <5     | <5      | <5 | Dry channel with pine needles. Doesn't look like it has flowed for some time.                              |
| 2686760 | 6134720 | <5     | >75    | <5 | <5     | <5      | <5 | Dry channel. Pasture growing in channel. A few willows on edges.                                           |
| 2685675 | 6134680 | <5     | <5     | <5 | <5     | >75     | <5 | Filled with grass, some watercress and other wet-loving plants.                                            |
| 2683675 | 6135150 | <5     | <5     | <5 | <5     | 51 - 75 | <5 | Water cress, duckweed and grass.                                                                           |

| Date       | Stream/Lake                                                                                                                                                                           | Easting | Northing | 1. Riparian<br>Veg Zone<br>Width (LB<br>and RB<br>means) | 2. Veg<br>Protection<br>(LB and<br>RB means) | 3. Bank<br>stability (LB<br>and RB<br>means) | 4. Channel<br>sinuosity |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------|
| 16/12/2008 | Lake Koputara 1,2,3 and Lake Omanu                                                                                                                                                    | 2701160 | 6082850  | 1                                                        | 2                                            | 18                                           | 12                      |
| 17/12/2008 |                                                                                                                                                                                       | 2701175 | 6081950  | 4                                                        | 7                                            | 18                                           | 4                       |
| 17/12/2008 |                                                                                                                                                                                       | 2700660 | 6081140  | 7.5                                                      | 5                                            | 12                                           | 4                       |
| 18/12/2008 |                                                                                                                                                                                       | 2700415 | 6080780  | 10                                                       | 6                                            | 17.5                                         | 5                       |
| 17/12/2008 |                                                                                                                                                                                       | 2700170 | 6080225  | 14                                                       | 9.5                                          | 18                                           | 5                       |
| 18/12/2008 |                                                                                                                                                                                       | 2700160 | 6079900  | 17.5                                                     | 10                                           | 9.5                                          | 9                       |
| 18/12/2008 |                                                                                                                                                                                       | 2700040 | 6079550  | 9                                                        | 7                                            | 19                                           | 5                       |
| 17/12/2008 | Lake Papaitonga (Waiwiri Stream)                                                                                                                                                      | 2696710 | 6060520  | 1                                                        | 3                                            | 18                                           | 8                       |
| 17/12/2008 |                                                                                                                                                                                       | 2695800 | 6061090  | 7                                                        | 5                                            | 17                                           | 8                       |
| 17/12/2008 |                                                                                                                                                                                       | 2694230 | 6061805  | 5                                                        | 5                                            | 19                                           | 8                       |
| 16/12/2008 | Lake Horowhenua (Hokio Stream)                                                                                                                                                        | 2699010 | 6064570  | 2                                                        | 4                                            | 18                                           | 8                       |
|            | This is the single site that had a hard-<br>bottom thus the hard-bottomed<br>assessment form was used. This has<br>two different assessment categories<br>than the soft- bottom form. |         |          | 1. Riparian<br>Veg Zone<br>Width (LB and<br>RB means)    | 2. Veg<br>Protection<br>(LB and RB<br>means) | 3. Bank<br>stability (LB<br>and RB<br>means) | 4. Frequency of riffles |
| 16/12/2008 |                                                                                                                                                                                       | 2698675 | 6064835  | 13                                                       | 9                                            | 18                                           | 9                       |
|            |                                                                                                                                                                                       |         |          | 1. Riparian<br>Veg Zone<br>Width (LB and<br>RB means)    | 2. Veg<br>Protection<br>(LB and RB<br>means) | 3. Bank<br>stability (LB<br>and RB<br>means) | 4. Channel sinuosity    |
| 16/12/2008 |                                                                                                                                                                                       | 2697375 | 6064725  | 13                                                       | 9                                            | 19                                           | 9                       |
| 16/12/2008 |                                                                                                                                                                                       | 2696650 | 6065060  | 16                                                       | 10                                           | 19                                           | 13                      |
| 16/12/2008 |                                                                                                                                                                                       | 2695390 | 6065825  | 13                                                       | 8                                            | 19                                           | 7                       |
|            |                                                                                                                                                                                       |         |          |                                                          |                                              |                                              |                         |

## **Qualitative Habitat Assessment Scores**

| 18/12/2008 | Te Hakari Wetlands         | 2692895 | 6057850 | 15   | 5    | 19   | 7  |
|------------|----------------------------|---------|---------|------|------|------|----|
| 18/12/2008 |                            | 2692750 | 6057965 | 17   | 10   | 19   | 6  |
| 22/12/2008 | Ohau Dune Lakes            | 2692475 | 6056520 | 11   | 4.5  | 18   | 6  |
| 22/12/2008 |                            | 2692155 | 6056125 | 5    | 5    | 18   | 6  |
| 14/01/2009 | Lake Koputara              | 2701300 | 6086610 | 6.5  | 5    | 18   | 2  |
| 14/01/2009 |                            | 2700670 | 6086530 | 1    | 1.5  | 13   | 7  |
| 14/01/2009 |                            | 2700325 | 6086730 | 2    | 5    | 19   | 6  |
| 14/01/2009 |                            | 2699610 | 6087180 | 10   | 8    | 8    | 7  |
| 16/01/2009 | Lake Kaikokopu             | 2701524 | 6089880 | 12   | 5    | 18   | 7  |
| 16/01/2009 |                            | 2700785 | 6090250 | 18.5 | 8    | 18   | 5  |
| 16/01/2009 |                            | 2700425 | 6090425 | 15   | 7    | 18.5 | 8  |
| 16/01/2009 |                            | 2700125 | 6090600 | 16.5 | 7.5  | 15   | 6  |
| 21/01/2009 | Omanuka & Pukepuke Lagoons | 2704050 | 6095540 | 16   | 5    | 13   | 10 |
| 21/01/2009 |                            | 2703825 | 6095250 | 13   | 4    | 19   | 10 |
| 15/01/2009 |                            | 2701335 | 6094140 | 14   | 4    | 19   | 5  |
| 15/01/2009 |                            | 2700440 | 6094615 | 19   | 14   | 12   | 2  |
| 15/01/2009 |                            | 2699890 | 6094950 | 19   | 14   | 18   | 5  |
| 22/01/2009 | Forest Rd Wetlands         | 2701631 | 6102800 | 12.5 | 7.5  | 19   | 2  |
| 22/01/2009 |                            | 2701620 | 6101925 | 16   | 10.5 | 19   | 8  |
| 22/01/2009 |                            | 2700850 | 6101285 | 13   | 5    | 19   | 5  |
| 22/01/2009 |                            | 2701130 | 6100875 | 11.5 | 5    | 19   | 7  |
| 22/01/2009 |                            | 2701270 | 6100115 | 13   | 4    | 19   | 4  |
| 23/01/2009 | Pukemarama Lagoon          | 2705700 | 6099385 | 1    | 2    | 19   | 6  |
| 23/01/2009 | -                          | 2704843 | 6100135 | 20   | 10   | 19   | 9  |
| 28/01/2009 | Knottingly Swamp           | 2698585 | 6113125 | 19   | 5    | 20   | 4  |
| 28/01/2009 |                            | 2698085 | 6113485 | 19   | 5    | 20   | 7  |
| 28/01/2009 |                            | 2697110 | 6113830 | 20   | 5    | 20   | 6  |
|            |                            |         |         |      |      |      |    |

| 27/01/2009 | Lake Koitiata               | 2696785 | 6118330 | 18 | 11   | 19 | 8  |
|------------|-----------------------------|---------|---------|----|------|----|----|
| 27/01/2009 |                             | 2696690 | 6117895 | 18 | 12   | 18 | 7  |
| 27/01/2009 |                             | 2695710 | 6117420 | 18 | 14   | 19 | 7  |
| 27/01/2009 |                             | 2696410 | 6117575 | 18 | 14   | 19 | 7  |
| 29/01/2009 | Artillerie Swamp            | 2696837 | 6115935 | 19 | 14   | 8  | 11 |
| 29/01/2009 |                             | 2696445 | 6115760 | 19 | 13   | 19 | 7  |
| 15/05/2009 | Lake Kaitoke                | 2686350 | 6135865 | 3  | 2    | 8  | 10 |
| 15/05/2009 |                             | 2685958 | 6135920 | 14 | 10.5 | 6  | 8  |
| 15/05/2009 |                             | 2685280 | 6136000 | 17 | 14   | 15 | 13 |
| 15/05/2009 |                             | 2684569 | 6135750 | 8  | 5    | 13 | 13 |
| 15/05/2009 |                             | 2683693 | 6135395 | 2  | 3    | 9  | 16 |
| 18/05/2009 | Lake Waipu                  | 2694056 | 6126330 | 12 | 14   | 11 | 13 |
| 18/05/2009 | -                           | 2693727 | 6125880 | 7  | 6    | 9  | 11 |
| 18/05/2009 |                             | 2693375 | 6125812 | 2  | 2    | 13 | 10 |
| 18/05/2009 |                             | 2693169 | 6125630 | 2  | 2    | 8  | 8  |
| 19/05/2009 | Lake Wiritoa and Lake Pauri | 2687730 | 6134470 | 8  | 14   | 16 | 11 |
| 19/05/2009 |                             | 2686760 | 6134720 | 5  | 3    | 16 | 7  |
| 19/05/2009 |                             | 2685675 | 6134680 | 6  | 4    | 9  | 5  |
| 19/05/2009 |                             | 2683675 | 6135150 | 3  | 2    | 10 | 11 |

| Easting | Northing | 5. Channel alteration | 6.<br>Sediment<br>deposition | 7. Pool<br>variability           | 8. Abundance<br>and Diversity<br>of Habitat | 9.<br>Periphyton |
|---------|----------|-----------------------|------------------------------|----------------------------------|---------------------------------------------|------------------|
| 2701160 | 6082850  | 17                    | 18                           | 9                                | 4                                           | 10               |
| 2701175 | 6081950  | 11                    | 17                           | 11                               | 4                                           | 16               |
| 2700660 | 6081140  | 17                    | 18                           | 5                                | 3                                           | 10               |
| 2700415 | 6080780  | 17                    | 18                           | 4                                | 5                                           | 16               |
| 2700170 | 6080225  | 17                    | 18                           | 4                                | 5                                           | 8                |
| 2700160 | 6079900  | 18                    | 16                           | 4                                | 5                                           | 9                |
| 2700040 | 6079550  | 16                    | 18                           | 5                                | 5                                           | 16               |
| 2696710 | 6060520  | 17                    | 19                           | 13                               | 4                                           | 7                |
| 2695800 | 6061090  | 18                    | 17                           | 13                               | 4                                           | 7                |
| 2694230 | 6061805  | 18                    | 18                           | 11                               | 4                                           | 16               |
| 2699010 | 6064570  | 16                    | 18                           | 11                               | 3                                           | 16               |
|         |          | 5. Channel alteration | 6. Sediment deposition       | 7. Velocity/<br>Depth<br>regimes | 8. Abundance<br>and Diversity<br>of Habitat | 9. Periphyton    |
| 2698675 | 6064835  | 18                    | 18                           | 14                               | 12                                          | 13               |
|         |          | 5. Channel alteration | 6. Sediment deposition       | 7. Pool<br>variability           | 8. Abundance<br>and Diversity<br>of Habitat | 9. Periphyton    |
| 2697375 | 6064725  | 19                    | 19                           | 12                               | 4                                           | 18               |
| 2696650 | 6065060  | 19                    | 19                           | 12                               | 5                                           | 16               |
| 2695390 | 6065825  | 18                    | 19                           | 11                               | 4                                           | 16               |
| 2693238 | 6058543  | 15                    | 19                           | 11                               | 5                                           | 16               |
| 2692895 | 6057850  | 14                    | 19                           | 9                                | 5                                           | 18               |
| 2692750 | 6057965  | 16                    | 16                           | 5                                | 14                                          | 15               |
| 2692475 | 6056520  | 17                    | 17                           | 7                                | 5                                           | 14               |
| 2692155 | 6056125  | 16                    | 19                           | 5                                | 4                                           | 10               |
|         |          |                       |                              |                                  |                                             |                  |

| 2701300                    | 6086610  | 13       | 19       | 13 | 4      | 16 |
|----------------------------|----------|----------|----------|----|--------|----|
| 2700670                    | 6086530  | 9        | 18       | 8  | 5      | 10 |
| 2700325                    | 6086730  | 14       | 19       | 6  | 4      | 13 |
| 2699610                    | 6087180  | 16       | 19       | 7  | 5      | 10 |
| 0701504                    | <000000  |          |          | _  | _      | _  |
| 2701524                    | 6089880  | 13       | 19       | 7  | 5      | 8  |
| 2700785                    | 6090250  | 16       | 18       | 10 | 5      | 5  |
| 2700425                    | 6090425  | 16       | 19       | 6  | 5      | 8  |
| 2700125                    | 6090600  | 16       | 19       | 6  | 5      | 5  |
| 2704050                    | 6095540  | 16       | 18       | 3  | 5      | 15 |
| 2703825                    | 6095250  | 10       | 18       | 4  | 4      | 15 |
| 2703025                    | 6094140  | 13       | 19       | 3  | 4      | 16 |
| 2700440                    | 6094615  | 13       | 18       | 3  | 3      | 10 |
| 2699890                    | 6094950  | 14       | 19<br>19 | 3  | 3      |    |
| 2077070                    | 0074750  | 14       | 19       | 5  | 5      | 6  |
| 2701631                    | 6102800  | 13       | 19       | 8  | 5      | 16 |
| 2701620                    | 6101925  | 16       | 18       | 7  | 5      | 16 |
| 2700850                    | 6101285  | 16       | 19       | 10 | 5      | 16 |
| 2701130                    | 6100875  | 16       | 19       | 11 | 5      | 16 |
| 2701270                    | 6100115  | 13       | 19       | 14 | 5      | 16 |
|                            | <000.00F |          |          |    |        |    |
| 2705700                    | 6099385  | 16       | 16       | 2  | 3      | 16 |
| 2704843                    | 6100135  | 19       | 18       | 2  | 4      | 16 |
| 2698585                    | 6113125  | 19       | 19       | 0  | 4      | 19 |
| 2698085                    | 6113485  | 19       | 19       | 0  |        | 0  |
| 2697110                    | 6113830  | 19<br>19 | 19<br>19 | 0  | 4<br>5 | 0  |
| 2077110                    | 0115050  | 19       | 19       | 0  | 5      | 0  |
| 2696785                    | 6118330  | 18       | 18       | 0  | 3      | 0  |
| 2696690                    | 6117895  | 18       | 18       | 0  | 4      | 0  |
| 2695710                    | 6117420  | 19       | 19       | 3  | 4      | 17 |
| 2696410                    | 6117575  | 18       | 18       | 0  | 4      | 0  |
| <b>a</b> <0 < c <b>a</b> = |          |          |          |    |        |    |
| 2696837                    | 6115935  | 19       | 18       | 5  | 2      | 16 |
|                            |          |          |          |    |        |    |

| 2696445 | 6115760 | 19 | 19 | 8 | 5 | 20 |
|---------|---------|----|----|---|---|----|
| 2686350 | 6135865 | 16 | 18 | 4 | 5 | 10 |
| 2685958 | 6135920 | 18 | 18 | 2 | 5 | 11 |
| 2685280 | 6136000 | 18 | 18 | 5 | 3 | 18 |
| 2684569 | 6135750 | 18 | 18 | 3 | 5 | 16 |
| 2683693 | 6135395 | 18 | 18 | 3 | 4 | 16 |
| 2694056 | 6126330 | 16 | 18 | 4 | 3 | 16 |
| 2693727 | 6125880 | 16 | 18 | 2 | 2 | 14 |
| 2693375 | 6125812 | 15 | 18 | 2 | 2 | 10 |
| 2693169 | 6125630 | 12 | 18 | 2 | 2 | 9  |
| 2687730 | 6134470 | 18 | 18 | 0 | 1 | 0  |
| 2686760 | 6134720 | 15 | 18 | 0 | 1 | 0  |
| 2685675 | 6134680 | 14 | 18 | 2 | 2 | 9  |
| 2683675 | 6135150 | 18 | 18 | 2 | 2 | 16 |

| Date<br>assessed | Easting | Northing | Stream name                        | Site location                                                  | Stream flow<br>at inspection |
|------------------|---------|----------|------------------------------------|----------------------------------------------------------------|------------------------------|
| 16/12/2008       | 2701390 | 6083550  | Lake Koputara 1,2,3 and Lake Omanu | Koputara 2 outlet                                              | Normal                       |
| 16/12/2008       | 2701080 | 6083020  |                                    | Between Lakes 2 and 3                                          | Normal                       |
| 17/12/2008       | 2701160 | 6081615  |                                    | Johnston cow crossing                                          | Normal                       |
| 17/12/2008       | 2700690 | 6081170  |                                    | Lake Omanu outlet                                              | Normal                       |
| 17/12/2008       | 2700175 | 6080260  |                                    | Palmer Rd culvert                                              | Normal                       |
| 18/12/2008       | 2700070 | 6079630  |                                    | Edinburgh Tce culvert                                          | Normal                       |
| 18/12/2008       | 2700040 | 6079520  |                                    | Seabury Ave culvert                                            | Normal                       |
| 17/12/2008       | 2697580 | 6060025  | Lake Papaitonga (Waiwiri Stream)   | Lake level weir                                                | Normal                       |
| 17/12/2008       | 2697565 | 6060035  |                                    | Farm track culvert by outlet weir                              | Normal                       |
| 17/12/2008       | 2697485 | 6060055  |                                    | Just Ds from farm track culvert                                | Normal                       |
| 17/12/2008       | 2696710 | 6060520  |                                    |                                                                | Normal                       |
| 16/12/2008       | 2699250 | 6064335  | Lake Horowhenua (Hokio Stream)     | Lake Horowhenua lake level weir at Hokio outlet                | High                         |
| 18/12/2008       | 2693340 | 6058571  | Ohau Loop                          | Ohau Loop outlet cow crossing                                  | Normal                       |
| not assessed     |         |          |                                    | Ohau Loop flood gated culvert                                  | not assessed                 |
| 18/12/2008       | 2692765 | 6057940  | Te Hakari Wetland                  | Te Hakari - lake level weir                                    | Normal                       |
| 18/12/2008       | 2692865 | 6058860  |                                    | Te Hakari - US most culvert                                    | Normal                       |
| 18/12/2008       | 2692760 | 6057965  |                                    | Te Hakari - DS culvert ~10 m DS of lake level weir.            | Normal                       |
| 22/12/2008       | 2692460 | 6056400  | Ohau Dune Lakes Wetlands           | Ohau Dune Lakes 2nd culvert US of Waikawa Stream               | Normal                       |
| 22/12/2008       | 2692480 | 6056500  |                                    | Ohau Dune Lakes 3rd culvert US of Waikawa Stream               | Normal                       |
| 13/01/2009       | 2692120 | 6056125  |                                    | Ohau Dune Lakes capped outlet 1st culvert US of Waikawa Stream | Tidal                        |
| 14/01/2009       | 2701465 | 6086645  | Lake Koputara                      | Koputara outlet US of weir                                     | Normal                       |
| 14/01/2009       | 2701380 | 6086675  |                                    | Koputara lake level weir behind Sexton house                   | Normal                       |
| 14/01/2009       | 2701270 | 6086585  |                                    | Koputara vehicle crossing by Sexton house                      | Normal                       |
| 14/01/2009       | 2701070 | 6086440  |                                    | Koputara by ford                                               | Normal                       |

# Appendix 4 – In-stream Structures

| 16/01/2009 | 2700435 | 6090410 | Lake Kaikokopu             | Kaikokopu weir just at town entrance                   | Normal |
|------------|---------|---------|----------------------------|--------------------------------------------------------|--------|
| 21/01/2009 | 2707350 | 6094850 | Omanuka – Pukepuke Lagoons | Omanuka just DS of lake                                | Dry    |
| 21/01/2009 | 2706630 | 6094850 | i c                        | Omanuka                                                | Dry    |
| 21/01/2009 | 2704980 | 6095655 |                            | Omanuka                                                | Normal |
| 21/01/2009 | 2704065 | 6095545 |                            | Omanuka                                                | Normal |
| 21/01/2009 | 2703480 | 6094370 |                            | Omanuka near Pukepuke                                  | Normal |
| 18/05/2009 | 2701605 | 6094225 |                            | Pukepuke lake level weir                               | Normal |
| 15/01/2009 | 2700575 | 6094545 |                            | Pukepuke old weir structure                            | Normal |
| 15/01/2009 | 2700510 | 6094590 |                            | Pukepuke just DS of old weir structure                 | Normal |
| 22/01/2009 | 2701631 | 6102800 | Forest Rd Wetlands         | Forest Rd Wetlands US most crossing on Nitschke Farm   | Normal |
| 22/01/2009 | 2701060 | 6101725 |                            | Forest Rd Wetlands US of new shed F                    | Normal |
| 22/01/2009 | 2701110 | 6101770 |                            | Forest Rd Wetlands US of new shed G                    | Normal |
| 22/01/2009 | 2701005 | 6101675 |                            | Forest Rd Wetlands US of new shed E                    | Normal |
| 22/01/2009 | 2700805 | 6101265 |                            | Forest Rd Wetlands at main race by new shed            | Normal |
| 22/01/2009 | 2700660 | 6101100 |                            | Forest Rd Wetlands near new shed                       | Normal |
| 22/01/2009 | 2700700 | 6101050 |                            | Forest Rd Wetlands near new shed C                     | Normal |
| 22/01/2009 | 2700775 | 6101025 |                            | Forest Rd Wetlands near new shed B                     | Normal |
| 22/01/2009 | 2700855 | 6100990 |                            | Forest Rd Wetlands adjacent to new shed A              | Normal |
| 22/01/2009 | 2701230 | 6100025 |                            | Forest Rd Wetlands floodgate at stopbank               | Normal |
| 23/01/2009 | 2707185 | 6098690 | Pukemarama Lagoon          | Pukemarama at lake outlet                              | Dry    |
| 23/01/2009 | 2706695 | 6098990 |                            | Pukemarama 2nd culvert DS of outlet                    | Dry    |
| 23/01/2009 | 2706345 | 6099000 |                            | Pukemarama 3rd culvert DS of outlet                    | Dry    |
| 23/01/2009 | 2706210 | 6099095 |                            | Pukemarama 4th culvert DS of outlet                    | Dry    |
| 23/01/2009 | 2706185 | 6099110 |                            | Pukemarama 5th culvert DS of outlet                    | Dry    |
| 23/01/2009 | 2705695 | 6099430 |                            | Pukemarama 6th culvert DS of outlet                    | Low    |
| 23/01/2009 | 2705505 | 6099610 |                            | Pukemarama on Tangimoana Rd (7th culvert DS of outlet) | Dry    |
| 28/01/2009 | 2698570 | 6113175 | Knottingly Swamp           | Knottingly Swamp 1st culvert DS of lake                | Normal |
| 28/01/2009 | 2697835 | 6113535 |                            | Knottingly Swamp 2nd culvert DS of lake                | Dry    |
| 28/01/2009 | 2697385 | 6113775 |                            | Knottingly Swamp 3rd culvert DS of lake                | Low    |
| 27/01/2009 | 2696775 | 6118305 | Lake Koitiata              | Koitiata 1st culvert DS of lake                        | Dry    |

| 27/01/2009 | 2696690 | 6118895 |                               | Koitiata 2nd culvert DS of lake                                | Dry    |
|------------|---------|---------|-------------------------------|----------------------------------------------------------------|--------|
| 27/01/2009 | 2696435 | 6117575 |                               | Koitiata 3rd culvert DS of lake                                | Dry    |
| 27/01/2009 | 2695600 | 6117385 |                               | Koitiata 4th culvert DS of lake                                | Dry    |
| 29/01/2009 | 2696865 | 6115900 | Artillerie Swamp              | Artillerie Swamp near lake                                     | Normal |
| 29/01/2009 | 2696622 | 6115970 |                               | Artillerie Swamp 1st culvert DS of lake                        | Normal |
| 15/05/2009 | 2686420 | 6135865 | Lake Kaitoke (Kaitoke Stream) | Kaitoke lake level weir                                        | Normal |
| 18/05/2009 | 2694005 | 6126610 | Lake Waipu                    | Lake Waipu dam                                                 | Dry    |
| 18/05/2009 | 2693435 | 6125855 |                               | Waipu culvert just US of main vehicle crossing                 | Normal |
| 18/05/2009 | 2693380 | 6125820 |                               | Waipu main vehicle crossing                                    | Normal |
| 18/05/2009 | 2693100 | 6125600 |                               | Waipu fresh vehicle crossing cutting just US of Turakina River | Normal |
| 19/05/2009 | 2688940 | 6134162 | Lake Wiritoa and Lake Pauri   | Wiritoa - Pauri connection                                     | Normal |
| 19/05/2009 | 2688013 | 6134473 |                               | Wiritoa outlet culvert                                         | Dry    |
| 19/05/2009 | 2687415 | 6134610 |                               | Wiritoa 2nd culvert DS of lake                                 | Dry    |
| 19/05/2009 | 2686760 | 6134615 |                               | Wiritoa weir few hundred metres US of start of wetted channel  | Dry    |
| 19/05/2009 | 2684520 | 6135125 |                               | Wiritoa dam culvert                                            | Normal |
| 19/05/2009 | 2683645 | 6135135 |                               | Wiritoa culvert just US of Kaitoke Stream confluence           | Normal |

| Easting | Northing | Structure<br>form   | Culvert<br>type      | Construction       | Gradient      | Bed material<br>in culvert | Typical bed material<br>(mud:sand:gravel:<br>cobble:boulder) |
|---------|----------|---------------------|----------------------|--------------------|---------------|----------------------------|--------------------------------------------------------------|
| 2701390 | 6083550  | Weir                | Weir                 | Concrete           | NA            | NA                         | 0:100:0:0:1                                                  |
| 2701080 | 6083020  | Culvert             | Pipe                 | Corrugated iron    | same          | no                         | 0:100:0:0:0                                                  |
| 2701160 | 6081615  | Culvert             | Pipe                 | Concrete           | same          | no access                  | 0:100:0:0:0                                                  |
| 2700690 | 6081170  | Culvert<br>(triple) | Pipe                 | Concrete           | same          | no                         | 0:100:0:0:0                                                  |
| 2700175 | 6080260  | Culvert             | Pipe                 | Corrugated iron    | same          | yes                        | 0:100:0:0:0                                                  |
| 2700070 | 6079630  | Culvert             | Pipe                 | Corrugated iron    | same          | yes                        | 0:100:0:0:0                                                  |
| 2700040 | 6079520  | Culvert             | Pipe (1/2<br>circle) | Corrugated iron    | same          | no                         | 0:100:0:0:0                                                  |
| 2697580 | 6060025  | Weir                | Weir                 | ? Overgrown        | NA            | NA                         | 0:100:0:0:0                                                  |
| 2697565 | 6060035  | Culvert             | Pipe                 | Concrete           | same          | no                         | 0:100:0:0:0                                                  |
| 2697485 | 6060055  | Culvert             | Pipe                 | Concrete           | same          | no                         | 0:100:0:0:0                                                  |
| 2696710 | 6060520  | Culvert             | Pipe                 | Concrete           | same          | no access                  | 0:100:0:0:0                                                  |
| 2699250 | 6064335  | Weir                | Weir                 | NA                 | NA            | NA                         | 0:100:0:0:0                                                  |
| 2693340 | 6058571  | Culvert             | Pipe                 | Concrete           | same          | No                         | 0:100:0:0:0                                                  |
|         |          | Culvert             | Pipe (flood gated)   | Concrete           | probably same | ?                          | 0:100:0:0:0 probably                                         |
| 2692765 | 6057940  | Weir                | Weir                 |                    | NA            | NA                         | 0:100:0:0:0                                                  |
| 2692865 | 6058860  | Culvert             | Pipe                 | Concrete           | same          | No                         | 0:100:0:0:0                                                  |
| 2692760 | 6057965  | Culvert             | Pipe                 | Concrete           | same          | ?                          | 0:100:0:0:0                                                  |
| 2692460 | 6056400  | Culvert             | Pipe                 | ? Probably plastic | same          | ?                          | 0:100:0:0:0                                                  |
| 2692480 | 6056500  | Culvert             | Pipe                 | Plastic            | same          | No                         | 0:100:0:0:0                                                  |
| 2692120 | 6056125  | Culvert             | Pipe                 | Concrete           | same          | ?                          | 0:100:0:0:1                                                  |
| 2701465 | 6086645  | Culvert             | Pipe                 | Concrete           | same          | ?                          | 0:100:0:0:0                                                  |
| 2701380 | 6086675  | Weir                | Weir                 | NA                 | NA            | NA                         | 0:100:0:0:0                                                  |

In-stream Structures continued.....

| 2701270 | 6086585          | Culvert             | Pipe | Corrugated iron               | same                                     | No  | 0:100:0:0:0 |
|---------|------------------|---------------------|------|-------------------------------|------------------------------------------|-----|-------------|
| 2701070 | 6086440          | Culvert             | Pipe | Concrete                      | same                                     | yes | 0:100:0:0:0 |
| 2700435 | 6090410          | Weir                | Weir | Wood                          | NA                                       | NA  | 0:100:0:0:0 |
| 2707350 | 6094850          | Culvert             | Pipe | Concrete                      | same                                     | No  | 0:100:0:0:0 |
| 2706630 | 6094850          | Culvert             | Pipe | Concrete                      | same                                     | No  | 0:100:0:0:0 |
| 2704980 | 6095655          | Culvert             | Pipe | Corrugated iron               | same                                     | No  | 0:100:0:0:0 |
| 2704065 | 6095545          | Culvert             | Pipe | Corrugated iron               | same                                     | No  | 0:100:0:0:0 |
| 2703480 | 6094370          | Culvert             | Pipe | Concrete                      | same                                     | No  | 0:100:0:0:0 |
| 2701605 | 6094225          | Weir                | Weir | Concrete & wood               | NA                                       | NA  | 0:100:0:0:0 |
| 2700575 | 6094545          | Weir                | Weir | Concrete                      | NA                                       | NA  | 0:100:0:0:0 |
| 2700510 | 6094590          | Culvert<br>(double) | Pipe | Concrete                      | same<br>(steeper -<br>broken<br>section) | No  | 0:50:0:50:0 |
| 2701631 | 6102800          | Culvert             | Pipe | Concrete                      | same                                     | no  | 0:100:0:0:0 |
| 2701060 | 6101725          | Culvert             | Pipe | Concrete                      | same                                     | no  | 0:100:0:0:0 |
| 2701110 | 6101770          | Culvert             | Pipe | Concrete                      | same                                     | no  | 0:100:0:0:0 |
| 2701005 | 6101675          | Culvert             | Pipe | Concrete                      | same                                     | no  | 0:100:0:0:0 |
| 2500005 | 6101 <b>0</b> 65 |                     |      | Concrete (new),               |                                          |     | 0 100 0 0 0 |
| 2700805 | 6101265          | Culvert             | Pipe | Corrugated iron<br>(x2 older) | same                                     | yes | 0:100:0:0:0 |
| 2700660 | 6101100          | Culvert             | Pipe | concrete                      | same                                     | no  | 0:100:0:0:0 |
| 2700700 | 6101050          | Culvert             | Pipe | concrete                      | same                                     | no  | 0:100:0:0:0 |
| 2700775 | 6101025          | Culvert             | Pipe | concrete                      | same                                     | no  | 0:100:0:0:0 |
| 2700855 | 6100990          | Culvert             | Pipe | corrugated iron               | same                                     | no  | 0:100:0:0:0 |
| 2701230 | 6100025          | Culvert & floodgate | Pipe | concrete                      | same                                     | ?   | 0:100:0:0:0 |
| 2707185 | 6098690          | Culvert             | Pipe | concrete                      | same                                     | no  | 0:100:0:0:0 |
| 2706695 | 6098990          | Culvert             | Pipe | concrete                      | same                                     | no  | 0:100:0:0:0 |
| 2706345 | 6099000          | Culvert             | Pipe | concrete                      | same                                     | no  | 0:100:0:0:0 |
| 2706210 | 6099095          | Culvert             | Pipe | concrete                      | same                                     | no  | 0:100:0:0:0 |
|         |                  |                     | •    |                               |                                          |     |             |

| 2706185<br>2705695 | 6099110<br>6099430 | Culvert<br>Culvert               | Pipe<br>Pipe     | plastic<br>concrete | same<br>same | yes<br>no | 0:100:0:0:0<br>0:100:0:0:0 |
|--------------------|--------------------|----------------------------------|------------------|---------------------|--------------|-----------|----------------------------|
| 2705505            | 6099610            | Culvert                          | Pipe             | concrete            | same         | no        | 0:100:0:0:0                |
| 2698570            | 6113175            | Culvert                          | Pipe             | wood                | same         | no        | 0:100:0:0:0                |
| 2697835            | 6113535            | Culvert                          | Pipe<br>(double) | Plastic             | same         | no        | 0:100:0:0:0                |
| 2697385            | 6113775            | Culvert                          | Pipe             | Plastic             | same         | no        | 0:100:0:0:0                |
| 2696775            | 6118305            | Culvert                          | Pipe             | Concrete            | same         | no        | 0:100:0:0:0                |
| 2696690            | 6118895            | Culvert                          | Pipe             | Concrete            | same         | no        | 0:100:0:0:0                |
| 2696435            | 6117575            | Culvert                          | Pipe<br>(double) | Concrete            | same         | no        | 0:100:0:0:0                |
| 2695600            | 6117385            | Culvert                          | Pipe             | Corrugated iron     | same         | yes       | 0:100:0:0:0                |
| 2696865            | 6115900            | Natural<br>fall                  | Fall             | Sand and vegetation | NA           | NA        | 0:100:0:0:0                |
| 2696622            | 6115970            | Culvert                          | Pipe             | Concrete            | same         | no        | 0:100:0:0:0                |
| 2686420            | 6135865            | Weir                             | Weir             | Wood and concrete   | NA           | NA        | 0:100:0:0:0                |
| 2694005            | 6126610            | Dam                              | Pipe<br>(double) | Concrete/plastic    | same         | no        | 0:100:0:0:0                |
| 2693435            | 6125855            | Culvert                          | Pipe             | Concrete            | same         | no        | 0:100:0:0:0                |
| 2693380            | 6125820            | Culvert                          | Pipe             | Plastic             | same         | no        | 0:100:0:0:0                |
| 2693100            | 6125600            | Drop<br>created by<br>earthworks | NA               | NA                  | NA           | NA        | mudstone (papa) bedrock    |
| 2688940            | 6134162            | Culvert                          | Pipe             | Concrete            | same         | yes       | 0:100:0:0:0                |
| 2688013            | 6134473            | Culvert                          | Pipe             | Concrete            | same         | yes       | 0:100:0:0:0                |
| 2687415            | 6134610            | Culvert                          | Box              | Concrete            | same         | no        | 0:100:0:0:0                |
|                    |                    |                                  |                  |                     |              |           |                            |

| 2686760 | 6134615 | Weir    | Weir | Steel with wood<br>top | NA      | NA  | 0:100:0:0:0 |
|---------|---------|---------|------|------------------------|---------|-----|-------------|
| 2684520 | 6135125 | Culvert | Pipe | Steel                  | flatter | no  | 0:100:0:0:0 |
| 2683645 | 6135135 | Culvert | Pipe | Concrete               | same    | yes | 0:100:0:0:0 |

| Easting | Northing |                            | (               | Culvert dimensi       | ons (m)           |                   | Cros   | ss section            | If Per | ched (m)          |
|---------|----------|----------------------------|-----------------|-----------------------|-------------------|-------------------|--------|-----------------------|--------|-------------------|
|         |          | length                     | diameter        | outlet water<br>depth | inlet water depth | sediment<br>depth | Inlet  | Outlet                | Height | Undercu<br>length |
| 2701390 | 6083550  | width: ~1.5                | NA              | 0.18                  | 0                 | NA                | Dry    | Pooled (slight perch) | 0.1    | 0                 |
| 2701080 | 6083020  | 6                          | 0.87            | 0.37                  | 0.29              | 0                 | Pooled | Pooled                | NA     | NA                |
| 2701160 | 6081615  | ~ 5                        | ~ 1             | ~ 0.4                 | ? No access       | ?                 | Pooled | Pooled                | NA     | NA                |
| 2700690 | 6081170  | ~ 5                        | 0.93            | > 0.5                 | 0.35              | 0                 | Pooled | Pooled                | NA     | NA                |
| 2700175 | 6080260  | 19                         | 1.5             | 0.3                   | 0.42              | ~0.7              | Flat   | Flat                  | NA     | NA                |
| 2700070 | 6079630  | ~ 22                       | 1.1             | 0.3                   | 0.35              | ?                 | Pooled | Pooled                | NA     | NA                |
| 2700040 | 6079520  | ~ 20                       | 1.08            | 0.05                  | 0.2               | 0                 | Pooled | Flat                  | NA     | NA                |
| 2697580 | 6060025  | width: > 2                 | NA              | ?                     | ?                 | NA                | Pooled | Perched               | ~0.5   | NA                |
| 2697565 | 6060035  | ~ 6                        | 0.5             | 0.12                  | no access         | 0                 | Pooled | Pooled                | NA     | NA                |
| 2697485 | 6060055  | 5                          | 0.9             | 0.09                  | no access         | 0                 | Flat   | Flat                  | NA     | NA                |
| 2696710 | 6060520  | 5                          | ~ 0.8           | ~ 0.4                 | ~ 0.4             | ?                 | Pooled | Pooled                | NA     | NA                |
|         |          | underwater                 |                 |                       |                   |                   |        |                       |        |                   |
| 2699250 | 6064335  | by 0.3 - 0.4<br>m at visit |                 | Pooled                | Pooled            | NA                | NA     | NA                    | NA     | NA                |
| 2693340 | 6058571  | 7.5                        | 1.2             | 0.7                   | 0.6               |                   | Pooled | Pooled                | NA     | NA                |
|         |          | ?                          | ~1.2            | ?                     | ?                 | ?                 | Pooled | Pooled                | NA     | NA                |
| 2692765 | 6057940  |                            |                 |                       |                   |                   |        |                       |        |                   |
| 2692865 | 6058860  | ~ 7.5                      | 0.6             | 0.29                  | 0.33              |                   | Pooled | Pooled                | NA     | NA                |
| 2692760 | 6057965  | ~ 5                        | 0.35            | 0.25                  | 0.25              | ?                 | Pooled | Pooled                | NA     | NA                |
| 2692460 | 6056400  | ? Maybe 10                 | ? Maybe<br>0.48 | ?                     | ?                 | ?                 | Pooled | Pooled                | NA     | NA                |
| 2692480 | 6056500  | 10                         | 0.48            | 0.36                  | 0.34              |                   | Pooled | Pooled                | NA     | NA                |
| 2692120 | 6056125  | ~ 7                        | 0.5             | underwater            | 0.33              | ?                 | Pooled | Pooled                | NA     | NA                |
|         |          |                            | ~ 2             | >1                    | >1                | ?                 | Pooled | Pooled                | NA     | NA                |

| 2701380 | 6086675 | width: ~8                 | NA                                             | 0.65  | 0.34 | NA  | Pooled | Pooled (slight perch)                                   | 0.1            | 0  |
|---------|---------|---------------------------|------------------------------------------------|-------|------|-----|--------|---------------------------------------------------------|----------------|----|
| 2701270 | 6086585 | 6                         | 0.6                                            | 0.04  | 0.09 | NA  | Flat   | Flat                                                    | NA             | NA |
| 2701070 | 6086440 | 5.1                       | 1                                              | 0.3   | 0.2  | 0.2 | Flat   | Flat                                                    | NA             | NA |
| 2700435 | 6090410 | width: 5.3                | NA                                             | 0.07  | 0.43 | NA  | Pooled | Perched                                                 | 0.25 -<br>0.67 | NA |
| 2707350 | 6094850 | 4                         | 0.6                                            | 0     | 0    | NA  | Dry    | Dry                                                     | NA             | NA |
| 2706630 | 6094850 | 4                         | 1                                              | 0     | 0    | NA  | Dry    | Dry                                                     | NA             | NA |
| 2704980 | 6095655 | 10                        | 0.6                                            | 0.5   | 0.7  | NA  | Pooled | Pooled                                                  | NA             | NA |
| 2704065 | 6095545 | 6                         | 1.1                                            | 0.25  | 0.34 | NA  | Pooled | Pooled                                                  | NA             | NA |
| 2703480 | 6094370 | 6                         | 1                                              | 0.35  | 0.2  | NA  | Pooled | Pooled                                                  | NA             | NA |
| 2701605 | 6094225 | width: 5.5                | NA                                             | 0.09  | 0.4  | NA  | Flat   | Flat                                                    | NA             | NA |
| 2700575 | 6094545 | width: 5.3<br>wetted:~2.5 | NA                                             | 0.02  | 0.25 | NA  | Pooled | Perched                                                 | 0.19           | 0  |
| 2700510 | 6094590 | ~6                        | 1                                              | ~0.05 | 0.13 | 0   | Flat   | Flat (would be<br>perched if pipe<br>wasn't<br>snapped) | 0              | 0  |
| 2701631 | 6102800 | 5                         | 1.4                                            | 0.4   | 0.35 | 0   | Pooled | Pooled                                                  | NA             | NA |
| 2701060 | 6101725 | 5                         | 1.27                                           | ~0.7  | ~0.7 | 0   | Pooled | Pooled                                                  | NA             | NA |
| 2701110 | 6101770 | 5                         | ~1.2                                           | ~0.7  | ~0.7 | 0   | Pooled | Pooled                                                  | NA             | NA |
| 2701005 | 6101675 | 5                         | 1.2                                            | 0.7   | 0.7  | 0   | Pooled | Pooled                                                  | NA             | NA |
| 2700805 | 6101265 | ~14                       | corrugated<br>iron: half<br>rounds 0.8<br>high | 0.35  | ?    | ?   | Pooled | Pooled                                                  | NA             | NA |
| 2700660 | 6101100 | ~5                        | 1.2                                            | 0.8   | 0.9  | 0   | Pooled | Pooled                                                  | NA             | NA |
| 2700700 | 6101050 | 5                         | 1.6                                            | 0.8   | 1.2  | 0   | Pooled | Pooled                                                  | NA             | NA |
| 2700775 | 6101025 | 5                         | 1.2                                            | 0.8   | 0.9  | 0   | Pooled | Pooled                                                  | NA             | NA |
| 2700855 | 6100990 | 6.5                       | 1.55                                           | 0.7   | 0.7  | 0   | Pooled | Pooled                                                  | NA             | NA |
| 2701230 | 6100025 | ~15                       | 1.55                                           | 1     | 1    | 0   | Pooled | Pooled                                                  | NA             | NA |
|         |         |                           |                                                |       |      |     |        |                                                         |                |    |

| 2707185 | 6098690 | 3           | 0.75                     | 0     | 0     | 0     | Flat   | Flat    | NA       | NA        |
|---------|---------|-------------|--------------------------|-------|-------|-------|--------|---------|----------|-----------|
| 2706695 | 6098990 | 4           | 0.75                     | 0     | 0     | 0     | Flat   | Flat    | NA       | NA        |
| 2706345 | 6099000 | 4           | 0.6                      | 0     | 0     | 0     | Flat   | Flat    | NA       | NA        |
| 2706210 | 6099095 | 4           | 0.45                     | 0     | 0     | 0     | Flat   | Flat    | NA       | NA        |
| 2706185 | 6099110 | 6           | 0.5                      | 0     | 0     | 0     | Flat   | Flat    | NA       | NA        |
| 2705695 | 6099430 | 4.5         | 0.9                      | 0.19  | 0.19  | 0     | Pooled | Pooled  | NA       | NA        |
| 2705505 | 6099610 | ~13         | 0.9                      | 0     | 0     | 0     | Flat   | Flat    | NA       | NA        |
| 2698570 | 6113175 | ~8          | 0.45                     | 0.45  | 0.04  | 0     | Flat   | Pooled  | NA       | NA        |
| 2697835 | 6113535 | 10.5        | 0.4/0.4                  | 0     | 0     | 0     | Flat   | Perched | 0/0.35   | 0/0.07    |
| 2697385 | 6113775 | ~5          | 0.4                      | 0.25  | 0.15  | 0     | Flat   | Pooled  | NA       | NA        |
| 2696775 | 6118305 | 12          | 0.45                     | 0     | 0     | 0     | Flat   | Perched | 0.44     | 0.91      |
| 2696690 | 6118895 | 7.5         | 0.7                      | 0     | 0     | 0     | Flat   | Perched | 0.17     | 0.75      |
| 2696435 | 6117575 | 12          | 0.3/0.45                 | 0     | 0     | 0     | Flat   | Perched | 0.1/0.33 | 0.92/0.48 |
| 2695600 | 6117385 | 6           | 1                        | 0     | 0     | ~0.1  | Flat   | Flat    | NA       | NA        |
| 2696865 | 6115900 | width: 0.5  | NA                       | 0.4   | 0.03  | NA    | Flat   | Perched | 0.25     | 0         |
| 2696622 | 6115970 | 15          | 1.8                      | 0.15  | 0.75  | 0.05  | Pooled | Flat    | NA       | NA        |
| 2686420 | 6135865 | width: 0.4  | NA                       | 0.67  | 0.45  | 0     | Flat   | Perched | 0.25     | 0         |
| 2694005 | 6126610 | ~13         | 0.7/0.4                  | 0     | 0     | 0     | Flat   | Flat    | NA       | NA        |
| 2693435 | 6125855 | 7.5         | 1.25                     | 0.1   | 0     | 0     | Flat   | Flat    | NA       | NA        |
| 2693380 | 6125820 | 10          | 0.36                     | ~0.05 | ~0.11 | 0     | Flat   | Perched | 0.06     | ~0.3      |
| 2693100 | 6125600 | width: 0.55 | NA                       | ~0.04 | ~0.03 | 0     | Flat   | Perched | 0.4      | NA        |
| 2688940 | 6134162 | 5           | ~0.65                    | ~0.3  | 0.25  | ~0.3  | Flat   | Flat    | NA       | NA        |
| 2688013 | 6134473 | ~14         | 0.9                      | 0     | 0     | ~0.05 | Flat   | Dry     | NA       | NA        |
| 2687415 | 6134610 | ~5          | 0.68 high x<br>1.25 wide | 0     | 0     | 0     | Flat   | Flat    | NA       | NA        |
| 2686760 | 6134615 | width: 1.8  | NA                       | 0     | 0     | 0     | Flat   | Perched | ~0.6     | 0         |
| 2684520 | 6135125 | ~5          | ~5                       | 0.05  | 0.18  | 0     | Flat   | Perched | 0.1      | 0.5       |
|         |         |             |                          |       |       |       | Flat   |         |          | NA        |

| Easting | Northing | Likely severity of<br>fish passage | Stream bed<br>relative to<br>culvert base | Stream width<br>relative to<br>culvert | Stream<br>alignment | Bank erosion<br>at ends | Other comments                                                                                                                                                              |
|---------|----------|------------------------------------|-------------------------------------------|----------------------------------------|---------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2701390 | 6083550  | Low flows                          | below                                     | same                                   | straight in-out     | no                      | Lake level weir. Dry US at time of visit with ~13<br>cm lip US and 10 cm lip above water DS. Proabably<br>inundated when lake levels are higher.                            |
| 2701080 | 6083020  | None/minimal                       | below                                     | wider                                  | straight in-out     | yes                     |                                                                                                                                                                             |
| 2701160 | 6081615  | None/minimal                       | ?                                         | wider                                  | straight in-out     | no                      | Inlet totally overgrown with wild parsnip                                                                                                                                   |
| 2700690 | 6081170  | None/minimal                       | below                                     | wider                                  | straight in-out     | no                      | Small lake directly upstream of culvert. No visible water movement.                                                                                                         |
| 2700175 | 6080260  | None/minimal                       | above                                     | wider                                  | straight in-out     | yes                     | clear sandy channel at outlet                                                                                                                                               |
| 2700070 | 6079630  | None/minimal                       | same                                      | wider                                  | straight in-out     | no                      | Stream choked with wild parsnip through Foxton<br>Beach                                                                                                                     |
| 2700040 | 6079520  | Low flows                          | below                                     | wider                                  | straight in-out     | no                      | Outlet built up with boulders. Lots of inanga DS.<br>Stillwater intertidal DS. Curved pipe.                                                                                 |
| 2697580 | 6060025  | Most flows                         |                                           |                                        |                     |                         |                                                                                                                                                                             |
| 2697565 | 6060035  | None/minimal                       | ?                                         | wider                                  | straight in-out     | no                      | Lake level weir and non-working fish pass ~ 10 m<br>US                                                                                                                      |
| 2697485 | 6060055  | Low flows                          | below                                     | wider                                  | straight in-out     | no                      |                                                                                                                                                                             |
| 2696710 | 6060520  | None/minimal                       | ?                                         | wider                                  | straight in-out     | no                      | Almost no visible water movement. Channel mostly overgrown.                                                                                                                 |
| 2699250 | 6064335  | Low flows                          | NA                                        | same                                   | straight in-out     | no                      | ~ 20 m wide. Weir underwater at this visit.<br>Abundand macrophytes, mostly Potamogeton sp.                                                                                 |
| 2693340 | 6058571  | None/minimal                       | Below                                     | wider                                  | straight in-out     | no                      | No visible water movement. Lake/pond conditions.                                                                                                                            |
|         |          | Low flows                          | ?                                         | ?                                      | ?                   | no                      | Not visited but severity inferred from photos and assessment of similar structures.                                                                                         |
| 2692765 | 6057940  | most flows                         |                                           |                                        |                     |                         |                                                                                                                                                                             |
| 2692865 | 6058860  | None/minimal                       | ?                                         | same                                   | straight in-out     | no                      |                                                                                                                                                                             |
| 2692760 | 6057965  | None/minimal                       | same                                      | wider                                  | straight in-out     | no                      | <ul> <li>~ 10 m US is lake level sandbag weir with fish pass<br/>(wooden with baffles). Currently inoperable, no<br/>water flowing down it. It has been observed</li> </ul> |

allowing inanga passage in the past.

| 2692460 | 6056400 | None/minimal                                    | ?     | wider    | straight in-out            | yes | The edges of the crossing are eroded and pipe<br>cannot be seen but there is obvious flow. Needs<br>attention and possible clearing.                                       |
|---------|---------|-------------------------------------------------|-------|----------|----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2692480 | 6056500 | None/minimal                                    | Below | Wider    | straight in-out            | no  | The DS concealed culvert is lpossibly the same type as this one.                                                                                                           |
| 2692120 | 6056125 | Most flows when<br>cap closed                   | Below | Wider    | straight in-out            | no  | Jammed closed tidal flap                                                                                                                                                   |
| 2701465 | 6086645 | None/minimal                                    | ?     | Wider    | straight in-out            | no  | Outlet not really begun yet as extensive swamp on<br>both sides of culvert. May have been drainage ditch<br>dug in past.                                                   |
| 2701380 | 6086675 | Low flows                                       | NA    | Narrower | straight in-out            | no  | Lake level weir. Perched. Slight trickle only at center.                                                                                                                   |
| 2701270 | 6086585 | None/minimal                                    | Below | Wider    | straight in-out            | yes | No visible water movement.                                                                                                                                                 |
| 2701070 | 6086440 | None/minimal                                    | same  | wider    | straight in-out            | yes | Just DS from a vehicle ford.                                                                                                                                               |
| 2700435 | 6090410 | Most flows                                      | below | same     | straight in-out            | no  | Significant weir with a lot of large (i.e. > 1m long)<br>concrete rubble dumped to prevent scour. Top of<br>weir above inlet substrate base.                               |
| 2707350 | 6094850 | None/minimal but<br>dry                         | below | wider    | straight in-out            | no  | Ephemeral. Dry at time of visit.                                                                                                                                           |
| 2706630 | 6094850 | None/minimal but<br>dry                         | same  | wider    | straight in-<br>curved out | no  | Ephemeral. Dry at time of visit.                                                                                                                                           |
| 2704980 | 6095655 | None/minimal                                    | same  | wider    | straight in-out            | no  |                                                                                                                                                                            |
| 2704065 | 6095545 | None/minimal                                    | same  | wider    | straight in-out            | no  |                                                                                                                                                                            |
| 2703480 | 6094370 | None/minimal                                    | same  | wider    | straight in-out            | yes |                                                                                                                                                                            |
| 2701605 | 6094225 | Low flows                                       | NA    | narrower | straight in-out            | no  | Fish ramp of rock material built this summer. Swift<br>flow but passable to fish. May still be a barrier when<br>lake level is below the top of the weir.                  |
| 2700575 | 6094545 | Most flows to<br>inanga. Eels<br>probably fine. | NA    | narrower | straight in-out            | no  | Old concrete structure. Maybe old lake level weir.<br>Has had middle smashed out but still perched. Large<br>concrete apron with its own 5 cm drop. Abundant<br>iron floc. |

| 2700510 | 6094590 | Low flows maybe              | same  | same  | straight in-out | yes |
|---------|---------|------------------------------|-------|-------|-----------------|-----|
|         |         |                              |       |       |                 |     |
| 2701631 | 6102800 | None/minimal                 | same  | wider | straight in-out | no  |
| 2701060 | 6101725 | None/minimal                 | same  | wider | straight in-out | no  |
| 2701110 | 6101770 | None/minimal                 | same  | wider | straight in-out | no  |
| 2701005 | 6101675 | None/minimal                 | same  | wider | straight in-out | no  |
| 2700805 | 6101265 | None/minimal                 | same  | wider | straight in-out | no  |
| 2700660 | 6101100 | None/minimal                 | same  | wider | straight in-out | no  |
| 2700700 | 6101050 | None/minimal                 | same  | wider | straight in-out | no  |
| 2700775 | 6101025 | None/minimal                 | same  | wider | straight in-out | no  |
| 2700855 | 6100990 | None/minimal                 | same  | wider | straight in-out | no  |
| 2701230 | 6100025 | Low flows                    | same  | wider | straight in-out | no  |
| 2707185 | 6098690 | None/minimal except when dry | same  | wider | straight in-out | no  |
| 2706695 | 6098990 | None/minimal except when dry | same  | wider | straight in-out | no  |
| 2706345 | 6099000 | None/minimal except when dry | same  | wider | straight in-out | no  |
| 2706210 | 6099095 | None/minimal except when dry | above | wider | straight in-out | yes |
| 2706185 | 6099110 | None/minimal except when dry | above | wider | straight in-out | yes |
| 2705695 | 6099430 | None/minimal                 | same  | wider | straight in-out | no  |
| 2705505 | 6099610 | None/minimal                 | above | wider | curved in -     | yes |
|         |         |                              |       |       |                 |     |

End sections of culverts have snapped forming a ramp. Only one has water flowing down "ramp". If it breaks further they could be severely perched. A deep outlet pool has formed at outlet.

| Totally overgrown with wild parsnip. Can't access |
|---------------------------------------------------|
| ends.                                             |
| Totally overgrown with wild parsnip. Can't access |
| ends. Raupo wetland ~100m US then pine trees.     |
| Totally overgrown by wild parsnip.                |
| Inlet totally overgrown with wild parsnip. New    |
| concrete pipe above older ones to cope with high  |
| flows.                                            |
| Overgrown with wild parsnip.                      |

Crossing surface subsiding at edges. Manual operation floodgate on outlet of culvert through stop bank. Coarse weed screen on inlet (lifted out of water at time of visit).

Obviously only flow here when lake is higher. Channel unfenced and full of pasture grass. Not far after small pond. Channel still dry. Dead sheep on crossing. Dry channel unfenced and full of pasture grass. Debris inlet implies significant flows at some time. Dead sheep part of debris. Dry channel infilled by sheep trampling. Channel just a depression in pasture. Sheep trampling has caused inlet to infill. Evidence of high flows from looking at debris at inlet. First culvert DS of lake with water. Channel totally filled with grass but is wetted. Road culvert. Currently dry. Channel moist but no

|         |         | except when dry                   |       |       | straight out                |     | water.                                                                                                                                       |
|---------|---------|-----------------------------------|-------|-------|-----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 2698570 | 6113175 | None/minimal but needs unblocking | same  | wider | straight in-out             | no  | Very overgrown. Found inlet pipe but not outlet.<br>Outlet seems to be under water and very overgrown<br>by macrophytes and edge vegetation. |
| 2697835 | 6113535 | None/minimal                      | same  | wider | straight in-out             | no  | Small boulders/cobbles dumped at outlet to prevent scour.                                                                                    |
| 2697385 | 6113775 | None/minimal                      | same  | wider | straight in-out             | no  | Overgrown, especially outlet that is hard to find.<br>Patch of raupo just DS. Damp patch with sitting<br>water.                              |
| 2696775 | 6118305 | Most flows                        | same  | wider | straight in-out             | no  | Dry. Perched outlet. Deep pool at outlet caused by scour (max. 0.75 m deep).                                                                 |
| 2696690 | 6118895 | Most flows                        | below | wider | straight in-out             | yes | Dry. Similar to first culvert but less perched and outlet pool dry.                                                                          |
| 2696435 | 6117575 | Most flows                        | below | wider | straight in-out             | yes | Dry. Concrete rubble slabs placed to reduce erosion<br>at outlet.                                                                            |
| 2695600 | 6117385 | None/minimal                      | above | wider | straight in-out             | no  | Dry.                                                                                                                                         |
| 2696865 | 6115900 | Most flows                        | NA    | NA    | straight in-out             | no  | Perched drop. Appears natural. Only found because of sound of water. Surrounded in raupo.                                                    |
| 2696622 | 6115970 | None/minimal                      | same  | wider | straight in-out             | yes |                                                                                                                                              |
| 2686420 | 6135865 | Most flows                        | same  | same  | straight in-out             | no  | Small weir for lake level control. Just DS of wooden bridge                                                                                  |
| 2694005 | 6126610 | None/minimal                      | above | wider | straight in-out             | yes | Only flows when lake level high. Large<br>dam/causeway vehicle crossing with 2 culverts.<br>Ephemeral outlet.                                |
| 2693435 | 6125855 | None/minimal                      | above | wider | straight in-out             | yes | Massive thick culvert. Little visible water movement.                                                                                        |
| 2693380 | 6125820 | Most flows                        | same  | wider | straight in-out             | no  | Overgrown inlet.                                                                                                                             |
| 2693100 | 6125600 | Most flows                        | NA    | same  | curved in –<br>straight out | yes | Perched drop created by earthworks of a small vehicle crossing cutting.                                                                      |

| 2688940 | 6134162 | None/minimal | same  | wider | straight in-out | no  | Main pipe measured. At least 3 smaller pipes visible<br>but are dry (above water). Outlet concealed by<br>rubble. |
|---------|---------|--------------|-------|-------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------|
| 2688013 | 6134473 | None/minimal | same  | wider | straight in-out | yes | Obviously only flows when lake level is higher.                                                                   |
| 2687415 | 6134610 | None/minimal | same  | same  | straight in-out | no  | More like a bridge than a culvet. Concrete ramp to reduce erosion at outlet.                                      |
| 2686760 | 6134615 | Most flows   | same  | same  | straight in-out | no  | Function unknown. Lots of rubble dumped to reduce scour. Small wooden bridge ~30 m DS                             |
| 2684520 | 6135125 | Most flows   | same  | wider | straight in-out | yes | Double culvert (one dry) draining small lake. Large wet area DS of drain and wetland US.                          |
| 2683645 | 6135135 | None/minimal | below | wider | straight in-out | yes | Inlet inaccessible with blackberry.                                                                               |