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Executive summary 
 
There are 226 lakes in the Manawatū-Whanganui region. Due to time and cost 
limitations, Horizons Regional Council currently monitors only 15 of these lakes 
using discrete water quality sampling by boat or helicopter.  
 
This report was commissioned by Horizons Regional Council to describe the 
scientific and technical feasibility of using satellite remote sensing to monitor more 
lakes at improved temporal and spatial scales.  
 
The report concludes that satellites can provide reliable monitoring of over 50 lakes 
in the region at better-than-monthly frequency.  
 
The primary attributes that can be estimated from satellite data include algal 
concentration (chlorophyll a), suspended particulate matter, water clarity, water 
colour, floating algae and macrophytes. The detection of cyanobacteria blooms is 
possible, but will require careful ground validation.  
 
The advantage of satellite remote sensing lies in efficiently obtaining states and 
trends of important water quality attributes for a regionally representative number of 
lakes. Combined with established in situ observation programmes, satellites can 
provide reliable monitoring at more frequent intervals, over more lakes, and for lower 
cost. Additionally, satellites can map the spatial variation in water quality across a 
lake, which may reveal important blooms that are missed by point-based sampling.  
 
The fundamental limitations of satellite monitoring of water quality attributes include 
the requirement for a cloudless view when the picture is taken and that satellites 
only directly observe the surface layer of the water. 
 
Satellite-derived water quality attributes can match in situ samples with 70-90% 
accuracy. The uncertainty is due to a combination of factors including measurement 
error, temporal offset and an effect of different spatial scale of the measurement.  
 
Horizons Regional Council is well-positioned to exploit the benefits of cost-effective 
satellite observations for lake monitoring due to the Council’s ongoing data 
collection and the availability of historical in situ data, which enables calibration of 
satellite-based retrieval algorithms. Further accuracy improvements can be achieved 
with targeted in situ observations and bio-optical characterisation of water bodies.  
 
However, this endeavour will require collaboration with external expertise. The 
calibration and validation of algorithms for water quality attribute retrieval and the 
automated processing of satellite data requires specialist knowledge and skills. Our 
experience is that a partnership such as this could lead to greater confidence around 
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satellite-based accuracy, opening the door for more streamlined reporting. 
 
Xerra has a track record of being a reliable partner and the mandate, as a regional 
research institute, to facilitate the use of Earth observation data for the stewardship 
of New Zealand’s natural resources and the prosperity and sustainability of our 
economy. We have the scientific and software design and development expertise to 
work with you to develop an easy-to-use, effective satellite remote sensing platform 
for lake monitoring built on the findings of this report. 

 
   

5 



1. Introduction  
 
The Horizons Regional Council has statutory environmental monitoring 
requirements, including commitments arising from the National Policy Statement for 
Freshwater Management (NPS-FM), (Ministry for the Environment (MfE) 2015) and 
State of the Environment (SOE) reporting.  
 
However, lakes, large rivers and estuaries pose a challenge for monitoring 
programmes due to their size, number and accessibility. To meet an increasing 
demand for more comprehensive monitoring (e.g., related to swimmable lakes and 
rivers (MfE 2017)), cost-effective tools that are capable of capturing various 
temporal and spatial scales are required.  
 
Remote sensing by satellite-borne sensors can address this challenge by 
autonomously observing environmental data at synoptic space and time scales 
(Alikas et al. 2015). These observations can support established programmes (e.g., 
regional environmental monitoring and swimmability testing) by directing 
ground-based sampling. 

Xerra Earth Observation Institute Limited (Xerra) was commissioned by Horizons 
Regional Council to evaluate the feasibility of lake water quality monitoring using 
satellite remote sensing. The scientific and technical feasibility of using remote 
sensing for the routine monitoring of lake water quality hinges on the responses to 
two key questions: 

1. Which key water quality attributes can be measured by satellites? 
2. How many lakes can be observed using satellites, and at what frequency? 

This report focuses on the technical issues related to the suitability of satellite 
remote sensing to deliver data that will enhance the monitoring programmes 
currently in place. 
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1.1 Structure of this report 
 
This report is organised into five sections, followed by references and appendices. 
The first section is the introduction.  

In Section 2, we identify the key water quality attributes that can be measured by 
satellites by reviewing literature pertinent to the use of remote sensing for water 
quality monitoring. We outline the current satellite and sensor technologies, define 
the water quality parameters which are observable using remote sensing platforms, 
and review which sensors are most suitable for the retrieval of individual parameters 
from lakes at a regional scale. We also describe different algorithms used to 
estimate water quality parameters from satellite imagery in terms of their error and 
validation statistics.  

We illustrate this using case studies, which highlight the accuracy that can be 
achieved with current remote sensing technologies for estimating water quality 
parameters.  

In Section 3, we quantify the number of lakes that can be observed using satellites 
and estimate the frequency of observations. To do this, we present the results of a 
spatial analysis on the size and shape of lakes in the Manawatū-Whanganui region. 
This section is supported by Appendix A and B, which show the lakes that are visible 
from space at 30 m pixel resolution in the region. We also provide imagery of these 
lakes to demonstrate their spatial scales relative to satellite-sensor pixel size, 
respectively. Finally, we present a reliable estimate of the number of clear satellite 
images that can be expected every month of the year, for each lake.  

Section 4 discusses practical aspects of designing and implementing a framework 
for satellite monitoring of lake water quality. We determine how much in situ data is 
available for calibration and validation of satellite estimates and we show 
preliminary chlorophyll a estimates for lakes Wiritoa and Pauri. We then demonstrate 
how satellite imagery provides the ability to interpret changes in lake water quality in 
the context of catchment scale processes. Finally, data processing requirements are 
summarised and an argument is made for automated retrieval, processing and 
reporting. 

The main conclusions of the report are followed by references and appendices. In 
Appendix A, we list the lakes visible from space at 30 m pixel resolution in the 
Manawatū-Whanganui region. In Appendix B, we show air photos and satellite 
images of these lakes to demonstrate their spatial scales relative to satellite-sensor 
pixel size. Appendix C shows four years of water colour data for the lakes listed in 
Appendix A.    
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2. Key water quality 
attributes measurable  
from space 
 

This section answers the question: What water quality related parameters can be 
measured with remote sensing? We describe the challenges of monitoring water 
quality at the regional level and outline how remote sensing may provide 
opportunities to support existing monitoring programmes.  

We also provide a succinct literature review summarising the state-of-the-art of 
water quality remote sensing applications and provide a number of case studies 
from our previous work (e.g., Lehmann et al. 2019; Allan et al. 2015; Hicks et al. 
2013). 

 

2.1 The challenges of conventional water quality monitoring 
 
The Manawatū-Whanganui region contains 226 standing water bodies (lakes ) larger 1

than 1 ha in surface area, of which 49 are named (Table 1 (below), Freshwaters of 
New Zealand (FENZ) geo-database, Leathwick 2010).  

Due to time and cost, the Ministry for the Environment State of the Environment 
(SOE) monitoring provides, usually, every two months, seasonal or annual sampling. 
This infrequency limits a decision maker’s ability to detect trends in water quality and 
important ecological processes occurring at weekly and monthly time scales.  

Furthermore, due to access, time and cost, conventional monitoring can only 
measure a small fraction of the region’s surface water resources. This sparsity limits 
a decision maker’s ability to uncover and address water quality issues across the 
region.  

   

1 While these standing water bodies may not be lakes by definition, the term “lake” is used in this 
report to refer to these water bodies, for convenience. 
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Table 1: Named lakes in the Manawatū-Whanganui region. Lakes that are part of SOE monitoring or 
NIWA’s macrophyte assessment, Lake Submerged Plant Indicators (LakeSPI), are indicated by a 
check mark. Lake identity (ID) is taken from the FENZ geo-database, Leathwick 2010. 

 Lake name  Lake ID  SOE monitoring  LakeSPI 

 Lake Moawhango  18610     

 Lake Horowhenua  4345  ✓  ✓ 

 Lake Otamangakau  21383    ✓ 

 Lake Papaitonga  1974    ✓ 

 Kaitoke Lake  18936     

 Lake Wiritoa  18934  ✓  ✓ 

 Crater Lake  20844     

 Mangahao Upper No 1 Reservoir  4342     

 Lake Pauri  18933  ✓  ✓ 

 Pukepuke Lagoon  5042  ✓  ✓ 

 Lake Kaikokopu  5014     

 Lake Heaton  13446  ✓  ✓ 

 Lake Namunamu  19624    ✓ 

 Marron Reservoirs a  18023     

 Lake Alice  13456  ✓  ✓ 

 Turitea Dams b  4926     

 Mangahao Lower No 2 Reservoir  4343     

 Omanuka Lagoon  5306  ✓  ✓ 

 Lake Koitata  16901  ✓  ✓ 

 Tokomaru No 3 Reservoir  476     

 Lake Koputara  5008  ✓  ✓ 

 Lake Westmere  18951  ✓  ✓ 

 Lake Bernard  13438    ✓ 
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 Lake Dudding  13447  ✓  ✓ 

 Lake Ngaruru  19621    ✓ 

 Lake Poroa  17286    ✓ 

 Lake Waipu  16939  ✓  ✓ 

 Lake Virginia  18957     

 Lake William  13437  ✓  ✓ 

 Lake Vipan  13443     

 Lake Rotokauwau  17014     

 Lake Te Whaiau  21372     

 Lake Maungaratanui  20096     

 Marron Reservoirs b  18027     

 Lake Rotokuru  18609     

 Lake Kohata  17214  ✓  ✓ 

 Lake Herbert  17363  ✓  ✓ 

 Lake Maungarataiti  20094    ✓ 

 Karere Lagoon  4509     

 Lake Colenso (Kokopunui)  34051     

 Lake Hawkes  20741     

 Rotoataha Lake  5955     

 Turitea Dams a  4925     

 Lake Oraekomiko  16932     

 Lake Hickson  13457     

 Lake Otamataraha  20673    ✓ 

 Lake Pounamu  20239     

 Ohinetonga Lagoon  21313     

 Mahangaiti Lake  31749     
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2.2 The remote sensing opportunity 
 
In contrast to conventional sampling methods, remote sensing provides an 
opportunity to ‘remotely sample’ water bodies at daily to weekly intervals. 
Furthermore, because of the spatial array of image pixels, remote sensing methods 
can map the spatial heterogeneity of water quality within a lake better than all but the 
most intense, boat-based sampling grids, and at comparatively small cost (Allan et 
al. 2015; Hicks et al. 2013).  

As a result, remote sensing technologies have been applied to a number of inland 
water quality studies worldwide (see Section 2.8 Case studies). Continuous 
developments in satellite and sensor technologies, and research into parameter 
retrieval algorithms, will only increase the use of remote sensing methods for water 
quality monitoring in the future (Dekker & Hestir 2012; Matthews 2011; Palmer et al. 
2015).  

 

2.3 Fundamentals of remote sensing for water quality 
 

Remote sensing provides a clear opportunity to address the challenges of 
conventional water quality monitoring. In this section we review the fundamental 
science used for retrieving water quality via remote sensing.  

Water quality remote sensing relies on sunlight reflected by water and its 
constituents, and therefore we begin with a description of how light interacts with 
matter.  

Light travelling through a medium, such as air or water, can be absorbed, reflected 
and scattered. The remotely sensed signal is the portion of the incoming solar 
radiation that is scattered back and reflected into a light sensing instrument  
(Figure 1).  
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Figure 1: Light interactions through the atmosphere, water and substratum (After Dekker & Hestir, 
2012). 

There are a multitude of pathways by which light can reach the sensor. First, sunlight 
is both absorbed and scattered by the atmosphere. Some of this light reaches the 
line of sight of the sensor and therefore does not interact with the water. The light 
that reaches the water surface is a mixture of direct sunlight and diffuse light, i.e., 
light scattered by the atmosphere (Olmanson et al. 2015).  

At the water surface, some light reflects back and may reach the sensor as sun glint. 
The portion of light that finally reaches below the air-water interface is then absorbed 
and scattered by water molecules and substances within the water (Kirk 1994). 
Again, only the portion of this light that is scattered back into the line of sight of the 
sensor and makes it back through the atmosphere can be measured by a satellite 
sensor.  

In order to estimate the water’s optical properties, the effect of atmospheric 
absorption and scattering has to be compensated for. Compensating for the 
atmosphere and sun glint, a process that is called atmospheric correction, results in 
an estimate of surface reflectance.  

Surface reflectance is the ratio of the light exiting the water surface upwards over 
the incoming sunlight (Schott, 2007). The normalisation of the light upwelling from 
the water to downwelling sunlight accounts for variations in the intensity and 
spectral shape of the incoming solar radiation. It is important to note that all 
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light-related quantities are calculated across a range of wavelengths within the 
spectral band, which are specific to the design of the sensor. 

Substances that alter the underwater light field are known as optically active 
constituents (OACs). OACs include the attributes that are related to water quality, 
such as algal pigments (chlorophyll a and phycocyanin), suspended particulate 
matter (TSS) and coloured dissolved organic matter (CDOM). These OACs have 
characteristic absorption and scattering properties which change the nature of the 
underwater light (Dekker & Hestir 2012, Mobley 1994).  

Once the spectrum of light reflected and scattered from the water column (i.e., 
spectral reflectance) is determined by remote sensing, we can apply retrieval 
algorithms to derive concentrations of constituent matter within the water column, 
which provides an estimate of water quality (Seyhan & Dekker 1986).  

Retrieval algorithms can be developed in a variety of ways, ranging from simple 
empirical relationships between in situ samples and radiance reflectance at certain 
wavelengths, through to spectral additive models based on radiative transfer theory.  

Many algorithms have been developed and validated for individual sensors, however 
the majority of these were created specifically for ocean waters (‘Case 1’ waters) 
where the dominant OAC is chlorophyll a (Olmanson et al. 2015). Inland water bodies 
and estuaries are known as ‘complex’ or ‘Case 2’ waters where three or more 
constituents are normally present in a mixture (Matthews 2011).  

The complexity of Case 2 signatures lies in the fact that different constituents can 
have reflectance or absorption peaks in the same area of the spectrum. For example, 
both chlorophyll a and TSS have a reflectance peak near 665 nanometers (nm), 
making it difficult to distinguish one from the other. As a result, Case 1 algorithms do 
not produce accurate results in Case 2 waters and, moreover, no single Case 2 
algorithm exists which works well in all Case 2 waters. A detailed review of 
algorithms is given in Section 2.7 Retrieval algorithms. 

Due to light extinction and scattering in the aquatic medium, most of the upwelling 
light comes from the surface layer of the water. Therefore, the depth to which the 
remotely-sensed information is attainable depends on water clarity, as it cannot 
resolve vertical variability in OACs.  

 

2.4 Current state of satellite remote sensing of inland water 
quality parameters 
 
Remote sensing of water quality parameters is carried out using a sensor for 
electromagnetic radiation in the visible range of the spectrum (approximately 400 to 
750 nm) which is mounted on Earth-orbiting satellites.  
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Four main attributes of the sensor and its satellite platform determine the potential 
of remote sensing for monitoring water quality parameters: spatial resolution, 
spectral resolution, temporal resolution and swath size. 

Spatial resolution refers to the pixel size on the ground of the image that is produced 
by a sensor. This parameter determines the size of the feature that can be accurately 
mapped using remote sensing (Dekker & Hestir 2012). A greater number of pixels 
within a water body means that the spatial variability of water quality can be 
determined with finer detail and that the water quality maps will have better 
resolution.  

Moreover, the spatial resolution has a direct impact on the size of the water body 
that can be accurately analysed. In other words, it is important to obtain a water-only 
pixel in a part of the lake where the bottom can not be seen. Else, the radiometric 
signal will be mixed with reflectance from land and the lake bottom, which 
compromises the quality of the retrieved water quality metrics. As the shape of lakes 
and their bathymetry can be complicated, an area of pure water pixels should be 
identified for each body of water to be used in the analysis of satellite imagery.  

Dekker & Hestir (2012) suggest that water body size should be at least 3 to 4 times 
the size of the pixel in order to obtain enough pure water pixels without signals from 
the surrounding banks and vegetation. For example, a sensor with 30 m spatial 
resolution, such as Landsat 7 and 8, could resolve a body of water of 120 by 120 m. 
Section 3 further discusses the limitations of sensor footprint for the visibility of 
water bodies in the Manawatū-Whanganui region.  

Spectral resolution describes the number and width of spectral bands that can be 
recorded by a sensor (Olmanson et al. 2015). A spectral band is a range of 
wavelengths within the full spectrum of light over which the sensor responds with a 
signal. The width of the spectral band is important because the spectral signature of 
some water-borne constituents can overlap. Thus, the more numerous and thinner 
the bands, the better the chances are for separating constituents and obtaining 
individual water quality parameters.  

A third sensor attribute is temporal resolution. Temporal resolution describes the 
time interval between time images of the same location are taken by a sensor 
(Matthews 2011). The temporal resolution of a particular satellite sensor depends on 
the return period of the satellite to the orbital path and the overlap of imaging swaths 
between adjacent paths. Satellites used for Earth observations have return periods 
ranging from one day to several weeks, with longer return periods meaning fewer 
images over a given duration of time.  

The return period and time of a satellite overpass is crucial when planning field work 
to collect corresponding in situ samples, as these samples are required as near to 
the time of a satellite overpass as possible. Whether in situ samples can be usefully 
related to satellite observations depends on the temporal variability of the water 
environment (e.g., most studies suggest that an offset be no more than a few days 
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apart). Odermatt et al. (2010) found that images taken up to 5 days after in situ 
measurements were adequate for oligotrophic lakes, however estuary sites required 
sampling to be nearer to the time of the satellite overpass.  

The fourth sensor attribute important in determining sensor feasibility is swath size, 
defined as the width of the sensor footprint on the ground. Many sensors sample a 
continuous track along the axis of satellite movement like a pushbroom. Thus, the 
swath size is the width of the sensor footprint perpendicular to the axis of 
movement.  

Satellite orbits are typically designed so that adjacent orbital paths produce 
overlapping swaths to ensure gapless coverage (Figure 3). Swath size and overlap 
are important to consider in the design of routine monitoring applications for inland 
water bodies, as they determine how much of a region can be covered in a single 
overpass. A complete image of a region may have to be composed of several 
overpasses and often, there are several days between adjacent orbits.  

This has implications when the objective is to compare simultaneous states of water 
bodies in the same region and also increases data processing requirements.  

Typically, sensors with larger swath sizes are more suited for monitoring at the 
regional scale, but have a disadvantage in that greater spatial coverage comes at a 
cost of lower spatial resolution, i.e., larger pixels.  

 

Figure 3: Left: Swaths of Sentinel-2 orbits covering New Zealand. Right: Position of Sentinel-2B on 1 
January 2020 22:17:30 Coordinated Universal Time (UTC). The orange line shows the imaging swath 
covered on this north-south overpass.  

Based on these sensor attributes, it is possible to determine which sensors are 
appropriate for satellite-based water quality monitoring.  
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Olmanson et al. (2015) suggest that regional scale inland water quality monitoring 
requires freely available imagery with a spatial resolution of 5 to 50 m2 at no less 
than weekly intervals and suitable spectral bands.  

 
2.4.1 Characteristics of current satellite sensors 
The satellite sensors in orbit today cover a range of resolutions, return periods and 
spectral bands (Table 2, below). It is noted that this list includes the information to 
date, but may be incomplete or contain obsolete sensors at the time of reading. For 
example, the Medium Resolution Imaging Spectrometer (MERIS) sensor which has 
provided data for numerous inland water studies is not included in this list due to its 
decommissioning in May 2012. 
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Table 2: Current satellite/sensor pairs available for inland water quality retrieval with spatial, temporal 
and spectral characteristics. The number of spectral bands of each sensor within the range 
commonly used for water quality sensing is provided (additional spectral bands outside this range are 
not listed). Lifespan is the planned operational life of the satellite. A plus (+) indicates that satellites 
are still operational beyond their original operational expectancy. Minimum detectable water body 
size was calculated as four times the pixel footprint (Dekker & Hestir 2012). 

Satellite 
(Operator) 

Sensor  Revisit 
(days) 

Spatial 
resoluti
on 
(m)** 

Number 
of 
spectral 
bands* 

Lifespan 
(years) 

Minimum 
water body 
area (ha) 

Landsat 7 
(NASA/USGS) 

ETM+  16  30  4  1999-2004+  1.4 

Landsat 8 
(NASA/USGS) 

OLI  16  15  Pan***  2013-2023  1.4 

30  5 

Terra and 
Aqua 
(NASA) 

MODIS  1  250  2  1999-2008+  1600 

500  2 

1000  9 

Suomi NPP 
(NASA/NOAA
/DoD) 

VIIRS  0.5  750  7  2011-2016   

Sentinel-2a 
and 2b 
(ESA) 

MSI  5  10  4  a: 2015-2023 
b: 2017-2024 

0.64 

20  4 

Sentinel-3a 
and 3b 
(ESA) 

OLCI  1-2  300  21  a: 2016-2025 
b: 2017 - 
2025 

144 

*In the spectral range 400-1000 nm 
**Spatial resolution may vary between spectral bands 
***Pan: one single band (panchromatic band 8, 500-680 nm) 
See Acronyms for further details of satellite and operator names.  
 

Table 2 summarises the currently available satellite-sensor pairs. Landsat 
Operational Land Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI) provide 
high spatial resolution, but at the expense of lower spectral resolution and broad 
spectral bands. Broad spectral bands mean that individual OACs cannot be easily 
retrieved (see discussion in Allan et al. 2015).  
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The narrow spectral bands of Moderate Resolution Imaging Spectroradiometer 
(MODIS), Ocean and Land Colour Instrument (OLCI) and MERIS provide sufficient 
spectral resolution to enable the application of semi-analytical algorithms which 
simultaneously estimate chlorophyll a, TSS and CDOM (Olmanson et al. 2011). 
However, the spatial resolution of these sensors precludes many smaller lakes from 
observation.  

Some investigators have attempted to circumvent the resolution trade-off by 
pansharpening, a data-fusion technique to merge images of high spectral resolution 
with images of high spatial resolution (Ashraf et al. 2008; Chang et al. 2015). This 
technique could be considered for small, high-priority water bodies. 

Sensor technology is continually under development and significant advances are 
expected from hyperspectral satellite missions. Successful hyperspectral satellites 
have already been launched by India (Hyperspectral Imaging Satellite (HysIS), 
launched November 2018), Italy (PRecursore IperSpettrale della Missione Applicativa 
(PRISMA), launched March 2019) and China (four Zhuhai-1 satellites, launched 
September 2019), although their data has not yet been made available for outside 
users. Germany’s Environmental Mapping and Analysis Program (EnMAP) is set to 
launch in 2020 and the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission 
(USA) has entered the critical design phase. Whether early hyperspectral satellite 
data is suitable for lake monitoring remains to be seen, as spatial resolution and light 
sensitivity may not be sufficient to resolve small and dark targets.  

In summary, inland waters are a difficult target for satellite remote sensing 
applications. Sensors that are designed for water (e.g., OLCI and MODIS) by virtue of 
their spectral resolution and light sensitivity have coarse spatial resolution while 
sensors for land (MSI and OLI) lack important spectral bands. Arguably, Landsat 8 
OLI, Sentinel-2 MSI and some sensors on privately operated satellites are the only 
choice for small lakes. 

 

Figure 4: Comparison of the spatial and spectral resolution of existing satellite sensors. 
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2.4.2 Other sensor platforms 
Sensors akin to those mounted on satellites can also be used in situ, from the 
ground or on airborne platforms.  

Handheld and stationary sensors retrieve optical measurements from a water body 
at a small spatial scale, (millimetres to metres) which can provide very detailed 
optical information for a particular site, but are inefficient at providing data across 
wider scales. Tan et al. (2015) recommend using handheld spectrometers in 
conjunction with in situ sampling to accurately and conveniently measure the 
spectral signature of smaller rivers and streams. This would require field visits much 
like current monitoring regimes, though the empirical relationship found between 
these could be used to enhance algorithms developed for multispectral satellite or 
airborne sensors that are limited by spectral resolution (Tan et al. 2015).  

Airborne platforms are often optimal for monitoring small water bodies as they have 
high spatial resolution and can employ newer or larger hyperspectral sensors (Julian 
et al. 2013; Matthews 2011; Tan et al. 2015; Torgersen et al. 2001). In addition, the 
sensors are flown at low altitudes reducing the need for atmospheric correction 
when applying water quality retrieval algorithms (Matthews 2011).  

Olmanson et al. (2013) found that airborne hyperspectral sensors could adequately 
predict water quality in large rivers, however the low-altitude flight paths again result 
in swath sizes too small for the complete capture of larger water bodies. Moreover, 
recurring flights are difficult to schedule for regular monitoring intervals, making it 
difficult to assess temporal trends.  

Finally, the large cost of both the sensors and air time may exceed operational 
budgets for regional-scale routine monitoring purposes (Julian et al. 2013; Matthews 
2011; Tan et al. 2015).  

 

2.5 Observable water quality constituents 
 
In Section 2.4, we evaluated which sensors are best-suited for operational water 
quality monitoring. In this section, we summarise the extent to which various water 
quality attributes can be measured by remote sensing. We specifically focus on three 
OACs: chlorophyll a and phycocyanin, coloured dissolved organic matter (CDOM), 
and total suspended solids (TSS). Several additional water quality attributes are 
discussed, including: turbidity, water clarity (Secchi depth), water colour, and surface 
scums/macrophytes.  
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Inland waters contain mixtures of OACs whose combined spectral absorption and 
scattering characteristics result in the observed spectral reflectance spectra.  

Figure 5 shows reflectance spectra from three lakes, each determined by a distinct 
complement of OACs.  

The reflectance spectrum of the oligotrophic Lake Taupō is dominated by absorption 
characteristics of water which produces highest reflection in the blue range of the 
spectrum (400-500 nm).  

Lake Rotoehu has a strong reflectance peak in the green range of the spectrum 
(around 550 nm) indicating that phytoplankton pigments are dominating the optical 
characteristics in this eutrophic lake.  

The reflectance spectrum of Lake Rotomanuka is lower than that of the other lakes 
with a maximum in the red end of the spectrum (700 nm). In this peat lake, CDOM 
absorbs much of the light, especially in the blue and green regions of the spectrum, 
making the water appear dark and brown.  

Finally, the increase of reflection in Lake Rotomanuka in the range 750 to 800 nm is 
likely caused by light scattered by suspended particulate matter. 

 

Figure 5: Reflectance spectra (Rrs) for a eutrophic lake (Lake Rotoehu), a peat lake (Lake Rotomanuka) 
and a clear oligotrophic lake (Lake Taupo) with coloured bars indicating regions of the spectrum often 
used to detect water quality constituents such as chlorophyll a (Chl), coloured dissolved organic 
matter (CDOM), phycocyanin (PC) and total suspended solids (TSS) (Reflectance spectra courtesy of 
the University of Waikato). 

To measure these reflectance spectra, multispectral remote sensing radiometers are 
designed to estimate the reflectance in strategic spectral regions, thus enabling the 
characterisation of the relative height of the peaks and troughs in the spectrum.  
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The spectral responses of two satellite sensors (MSI on Sentinel-2 and OLCI on 
Sentinel-3) are superimposed on lake reflectance spectra in Figure 6. This illustrates 
that the narrower bands of OLCI are better suited to characterise the nuances of 
aquatic reflectance spectra than the broad bands of MSI (Gitelson et al. 2008; 
Olmanson et al. 2015).  

 

Figure 6: Wave bands of Sentinel-2 MSI (grey boxes) and Sentinel-3 OLCI (yellow boxes) 
superimposed on reflectance spectra from three lakes and the spectral regions affected by OACs as 
in Figure 5.  

Indeed, the spectral and spatial characteristics of these sensors (Table 2) means 
that lake water quality remote sensing is challenging, because sensors whose 
spectral response is optimised for water (MODIS and OLCI) have lower spatial 
resolution, thus restricting the size of lakes that can be resolved. Therefore, many 
inland water studies have used data from sensors optimised for terrestrial 
applications (Landsat Enhanced Thematic Mapper Plus (ETM+) and OLI as well as 
Sentinel-2 MSI). Limitations of using the terrestrial sensors include a reduced ability 
to distinguish chlorophyll a from TSS and a reduced ability to detect cyanobacteria 
using the phycocyanin signal.  

In Sections 2.5.1–2.5.6, we describe the specific challenges related to the retrieval of 
individual water quality components (i.e. chlorophyll a and phycocyanin, CDOM, TSS, 
turbidity, Secchi depth, water colour, and surface scums/macrophytes).  

 

2.5.1 Chlorophyll a and phycocyanin 
The photosynthetic pigment chlorophyll a (found in algae) and the accessory 
pigment, phycocyanin (found in cyanobacteria), are indicative of phytoplankton and 
cyanobacterial biomass, respectively (Dekker & Hestir 2012). High concentrations of 
chlorophyll a can signify nuisance algal blooms, high nutrient levels, and increased 
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trophic status, while high phycocyanin concentrations can indicate the presence of 
often harmful or toxic cyanobacterial blooms (Dekker & Hestir 2012).  

Chlorophyll a concentrations <30 microgram per litre (mg m-3) have been 
successfully retrieved using a strong absorbance trough at 440 nm, while chlorophyll 
a concentrations >30 mg m-3 have been retrieved using both a peak at 560 nm and 
the ratio of the absorbance trough near 660 nm with the reflectance peak at 700 nm 
(refer to Figure 6 for reflectance spectra) (Allan, 2008; Matthews, 2011; Odermatt et 
al. 2012; Olmanson et al. 2013).  

Inclusion of the peak at 700 nm has proven highly successful in a number of studies 
on lakes, rivers and estuaries (r2 > 0.8) as CDOM absorption in this region is minimal, 
aiding in the distinction between these two co-occurring constituents (Matthews 
2011; Olmanson et al. 2013).  

It should be noted that the exact location and width of these spectral peaks and 
troughs differ depending on the species of phytoplankton present as well as their 
physiological state (Allan 2014), which may add an error to the retrieval of 
chlorophyll concentration from reflectance. 

Phycocyanin has a strong absorption peak at 620 nm, often detectable by sensors 
with narrow bands. This spectral region falls within a gap in Landsat sensor 
wavebands (Matthews 2011; Olmanson et al. 2015), however, successful retrieval 
estimates have been obtained using MERIS imagery. Simis et al. (2005) and Gomez 
et al. (2011) both found close relationships of phycocyanin (r2 = 0.94 – 0.97) using 
MERIS imagery to both in situ samples and fluorometry measurements, respectively.  

 

2.5.2 Coloured dissolved organic matter (CDOM) 
CDOM is comprised of coloured humic and fulvic acids which originate from the 
breakdown of both allochthonous and autochthonous organic matter, also known as 
yellow-substance, gelbstoff or gilvin, and is often visible in water as brownish or 
tea-like colouration (Matthews 2011; Vant 2015). As such, CDOM concentrations can 
be indicative of the organic matter and aquatic carbon content of water (Dekker & 
Hestir, 2012) as well as potentially providing an indication of dissolved organic 
carbon (DOC) concentration, although these correlations require further development 
(Brezonik et al. 2015).  

CDOM is often a major constituent in peat lakes (Allan 2008; Davies-Colley & Vant 
1987) and it is the main light absorbing constituent in many rivers under normal flow 
conditions, with concentrations increasing after storm events, which flush humics 
from the catchment (Julian et al. 2013). Due to the strong absorbance 
characteristics of CDOM, it is often difficult to derive from reflectance signatures 
because it appears similar to clear, deep water (Dornhofer & Oppelt 2016). However, 
many studies have used the strong absorption peak at 440 nm or the ratio of both 
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sensitive bands below 600 nm and normalisation bands above 600 nm to retrieve 
CDOM estimates (Matthews 2011; Odermatt et al. 2012) (Figure 5).   

 

2.5.3 Total suspended solids (TSS) 
Total suspended solids (TSS) include all particles suspended in water which do not 
pass through a 0.2 µm filter. According to this definition TSS is comprised of a wide 
variety of material, such as mineral or inorganic particles, detritus, phytoplankton 
cells and animal matter. Especially in shallow lakes, TSS can include considerable 
amounts of detritus and inorganic mineral particles resuspended from the bottom.  

While its detailed optical characteristics depend on the absorption and scattering 
properties of the various constituents (Vant 2015), scattering by the suspended 
mineral fraction causes a reflection peak between 510 – 550 nm and in the infrared 
range of the spectrum, i.e. above 700 nm (Allan 2008). The reflectance peak between 
510 and 550 nm is successfully used to derive TSS when these are below 30 mg L-1, 
but at higher TSS concentrations, reflectance above 800 nm is used due to 
superimposition by the optical properties of chlorophyll a at 550 nm (Olmanson et al. 
2013).  

Often in the technical literature, variables related to TSS are defined and used in 
remote sensing applications, e.g., suspended sediment, suspended particles, 
suspended matter or non-volatile suspended solids. This makes it difficult to 
compare and contrast TSS-related results in detail. In this review, several operational 
definitions for TSS-related variables may be reported.  

 

2.5.4 Turbidity 
Turbidity is a measure of water clarity related to light absorbed and scattered by all 
OACs. Turbidity is a useful measure of light availability under water and is therefore 
related to many ecosystem processes (Dekker & Hestir 2012). Due to the strong 
influence of suspended solids on water clarity, reflectance at 700 nm is most often 
used to derive turbidity from remotely sensed signals (Figure 6) (Hicks et al. 2013).  

 

2.5.5 Secchi depth 
Secchi depth (SD) is a measure of water clarity in the vertical direction. Like turbidity, 
it is a function of scattering and absorption caused by all OACs. It has been 
successfully correlated to OACs, especially to chlorophyll a concentrations in the 
open ocean. Due to its relationship with water clarity it can be related to the depth of 
the euphotic zone, i.e. the depth to which net positive rates of photosynthesis occur. 
Remote sensing has been shown to produce very good estimates of Secchi depth in 
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several studies, most often using the ratio of peaks at 500 nm and 610 nm (Figure 7) 
(Allan 2008; Hicks et al. 2013; Olmanson et al. 2015; Zhao et al. 2011; Zhao et al. 
2014).  

 

2.5.6 Water colour 
The colour of water as perceived by a human observer is intuitively associated with 
its suitability for consumption, quality for food collection, fitness for recreation, and 
aesthetic value, making it arguably one of the oldest water quality attributes. Colour 
is similar to water clarity (e.g., Secchi depth) in that it integrates across several 
routinely measured attributes as well as being a useful attribute in itself.  

The main constituents that give water a colour other than blue are phytoplankton 
pigments, suspended particulate matter and coloured dissolved organic matter 
(IOCCG 2006). Thus, water perceived in hues of green, yellow, and brown are 
fundamentally linked to concentrations of chlorophyll a, TSS and other optically 
active constituents.  

Determination of water colour does not require knowledge of inherent optical 
properties and can therefore be unequivocally determined from spectral 
observations such as those made by optical satellite sensors. It is therefore a good 
choice for first implementations of satellite monitoring applications.  

2.5.7 Surface scums and macrophytes 
A final water quality attribute relates to surface scums. Surface scums, such as 
those produced by buoyant algal blooms and macrophytes floating at the surface or 
suspended just below the surface, can effectively shield the water column from 
observation by satellite sensors. On the other hand, the detection of surface scums 
and macrophytes by satellite sensors may be useful in its own right.  

Surface vegetation can be qualitatively distinguished from open water using the 
reflectance signal at red or near infrared wavelengths. This is known as the ‘red-edge 
method’. Water efficiently absorbs light at these wavelengths and therefore appears 
nearly black in, for example, band 5 of MSI (centered at 704 nm), while vegetation at 
the surface reflects some light at this wavelength. Several methods have been 
developed involving single-band reflectances or simple functions of multiple bands 
(see summary in Liang et al. 2017).  

Complications of the red-edge method arise in highly turbid waters where the 
water-leaving signal in the red may not be zero. Dogliotti et al. (2018) used the 
floating algal index, which makes use of the strong signal in the infrared part of the 
spectrum. They combined this with conditions set on the red band in order to avoid 
misclassifying highly turbid waters. Conditions were also added on the CIE L*a*b* 
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colour space  coordinates to confirm the visually 'green' pixels as floating 2

vegetation. Using this method, they were able to map floating mats of water hyacinth 
in turbid waters in a river in Lower Amazonia, Brazil, using MSI, OLI and Aqua/MODIS 
data.  

Simple red-band reflectance methods can not discriminate between floating algae 
such as cyanobacteria scum and macrophytes. To study the differential distribution 
of these two indicators of eutrophication in Lake Taihu, China, Lian et al. (2017) 
developed an index using MODIS data at 250 m spatial resolution. Their index was 
based on a blue, a green, and a shortwave infrared band to separate waters with 
cyanobacterial scums from those dominated by aquatic macrophytes, as well as a 
turbid water index to avoid interference from high turbid waters typical of shallow 
lakes.  

 

2.6 Retrieval of water quality constituents 
 
The main steps required in obtaining estimates of water body constituents from 
remote sensing imagery are (summarised from Dekker & Hestir 2012): 

1. Access the raw satellite data; 
2. Process the data to correct for atmospheric effects; 
3. Identify water body and isolate water-only pixels; and 
4. Apply algorithms for the retrieval of water quality information. 

 

2.6.1 Access the raw satellite data 
The first step involves the acquisition of this satellite imagery, which can usually be 
downloaded from the operators’ website or file service. The pre-processing steps 
can range from simple to complex depending on the corrections applied to the 
image.  

The spectral shape of light at the top of the atmosphere (TOA), i.e., at the sensor, is a 
function of the optical properties of aerosols and clouds. Up to 90% of 
sensor-reaching light can be a result of atmospheric scattering and absorption (e.g., 
Allan et al. 2015). Therefore, the majority of studies employ atmospheric correction 
methods and cloud cover assessments that aim to remove atmospheric effects, 
resulting in water-leaving radiance or water-leaving reflectance.  

Additionally, satellite data are provided by vendors at varying processing levels. At 
the processing level used for water quality assessment, the data are already 

2 A perceptually uniform color space which expresses color as three values: L*  (lightness) a* 
(green to red) and b*  (blue to yellow).  
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georectified with information on the quality of the georectification relative to control 
points provided in the metadata.  

 

2.6.2 Atmospheric correction 
The second step is atmospheric correction. The most common atmospheric 
correction methods are either image-based or based on radiative transfer theory.  

Image-based correction methods rely solely on the information provided in the 
satellite image and involve the use of either dark or light pixels as an estimate of the 
atmospheric signal to be subtracted from the TOA measurement (Allan et al. 2011).  

Alternatively, methods based on radiative transfer theory attempt to model the 
atmosphere’s optical properties based on current conditions. These methods are 
often preferred due to their flexibility in being able to model atmospheric 
complexities over inland waters such as changes in elevation and adjacency effects 
(Allan et al. 2015; Campbell et al. 2011). One popular approach is the “Second 
simulation of a satellite signal in the solar spectrum” (the 6sv model of Vermote et 
al. 1997)  

These methods require an accurate record of the atmospheric conditions present 
during satellite image capture. Such information can be difficult to obtain and may 
have to be estimated, although more recent satellite sensors such as MODIS now 
collect concurrent atmospheric data that can be used for correction (Allan 2014).  

While radiative transfer modelling aims for a more accurate correction, numerous 
atmospheric parameters are often estimated, which can create considerable 
uncertainty in the result (Allan et al. 2011). Some studies found that 
non-atmospherically corrected empirical methods produced similar if not more 
accurate results than atmospherically corrected semi-analytical algorithms in 
Minnesota lakes (e.g., Olmanson et al. 2011). This suggests that it is possible to get 
atmospheric correction wrong with detrimental effects for the parameter retrieval.  

Related to atmospheric correction is the detection and mapping of clouds within the 
image, which occlude water targets and can introduce error in the results. Thus, 
cloud masks are often applied to remove pixels disguised or contaminated by clouds 
(Olmanson et al. 2008; Allan 2014).  

Cloud detection methods can be automated, as successfully demonstrated by Hicks 
et al. (2013) and Allan (2014). To improve these assessments, newer sensors 
include bands specifically positioned for cloud detection such as the new short wave 
infrared (SNIR) band on Landsat 8 (Roy et al. 2014) and two SWIR bands on 
Sentinel-2 (Olmanson et al. 2015). 

In addition to meteorological clouds, wildfires and storms over desert areas pose 
challenges to the retrieval of surface reflectance, as these produce highly absorbing 
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aerosols which atmospheric correction algorithms relying on the dark pixel method 
cannot identify and account for (Frouin et al. 2019).  

As a result, the water reflectance in such cases will typically be underestimated, 
leading to an overestimation of water quality constituents such as chlorophyll 
concentration. The Australian bushfires burning between December 2019 and 
February 2020 produced atmospheric aerosols visible by the naked eye and 
detectable in satellite imagery (Figure 7).  

A search for images in which the Manawatū-Whanganui region was affected by 
aerosols from the Australian bushfires yielded few results. In other words, the 
distance to the fire, variability of atmospheric transport and coincident cloud-free 
coverage of the region appear to have minimised the probability of impacting 
satellite images in this region. However, this case illustrates the sensitivity of water 
quality retrievals to atmospheric conditions and stresses the need to assess the 
results critically.  

  

Figure 7: Sentinel-3 OLCI image from 2 February 2020 (New Zealand date) showing diffuse aerosols 
from the Australian bushfires over the lower North Island and over the Tasman Sea.  

 

Lehmann et al. (2018) found that the atmospherically corrected Landsat OLI data 
available from USGS was suitable for first applications of retrieval algorithms and 
similar conclusions were made with MSI data provided by ESA (unpublished). It is 
therefore recommended that the design of water quality monitoring applications 
starts with established atmospheric corrections and their suitability is evaluated at 
the validation stage.  
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2.6.3 Isolate water pixels 
After atmospheric compensation and cloud removal, step three involves the removal 
of all non-water pixels, in addition to those contaminated by light reflected from the 
bottom of the lake or stray light from the surrounding land. This is usually done by 
first masking terrestrial pixels from the image and, second, analysing the data to 
detect spectral signatures typical for scattering from the bottom or edges of the 
lake. 

 

2.6.4 Apply water quality retrieval algorithms 
Finally, the fourth, and arguably the most important step, is to apply algorithms for 
the retrieval of water quality parameters. Given the optical complexity and 
heterogeneity of inland waters, rigorous algorithm development and testing is 
required to find suitable approaches for a range of sites, conditions and constituent 
concentrations.  

To date, no operational algorithm exists that is generally applicable to complex 
inland waters (Palmer et al. 2015; Politi et al. 2015), unlike open ocean algorithms, 
which are operational and widely applicable. In Section 2.7, we review the most 
common retrieval algorithms for inland water quality.  

The uncertainty in satellite-derived estimates is partly due to uncertainty in 
atmospheric and aquatic optical characteristics which are a component of the 
measurement error inherent in any analytical method. Also contributing to this 
variability is the discrepancy between the spatial scale of the measurements: The 
satellite signal is a spatially integrated measurement, both across a depth horizon 
(tens of centimeters to meters) and the pixel size (tens to hundreds of meters). The 
satellite measurement is therefore representative of a larger area of the lake while 
the in situ sample is really only valid for the singular sampling location. Finally, there 
is usually a time difference between samples used for validation of satellite retrieval 
accuracy and and changes in attributes over this time period will increase the error. 

 

2.7 Retrieval algorithms 
 
Retrieval algorithms are used to estimate the concentration of a water quality 
parameter from the spectral water-leaving radiance measured by a sensor. 
Commonly-used algorithms generally fit into two categories, empirical or 
semi-analytical (The International Ocean-Colour Coordinating Group (IOCCG) 2006; 
Olmanson et al. 2015).  
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Empirical algorithms describe the statistical relationships between spectral band 
reflectance and in situ water quality samples. They can be viewed as a black box 
approach, which requires little understanding of radiative transfer.  

The semi-analytical approach, on the other hand, aims to use radiative transfer 
theory to estimate parameter concentrations based on spectral absorption and 
scattering by OACs. Figure 8 illustrates the fundamental difference between 
empirical and semi-analytical algorithms, where IOP refers to inherent optical 
properties and TOA refers to top-of-atmosphere.  

 

Figure 8: Generalised flow chart of common constituent retrieval methods, from satellite data at the 
top of the atmosphere (TOA) to OAC concentration (bottom of the chart). IOP (inherent optical 
properties) are the spectral absorption and scattering characteristics of OACs 

The major difference between the types of algorithms for end-users is the scale of 
possible application. Empirical algorithms are generally applicable only to the water 
body and the specific sensor for which they were created, while semi-analytical 
algorithms should be more generally applicable to a range of water bodies and 
concentrations (Allan et al. 2015). Sections 2.71 and 2.7.2 provide a review of recent 
advances in the application of both types of algorithms.  
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2.7.1 Empirical algorithms 
Empirical algorithms require in situ data on each water quality variable in order to 
determine a statistical relationship between the reflectance of spectral bands and 
the concentration of constituents at the time of image capture (Dornhofer & Oppelt 
2016; Olmanson et al. 2015). The resulting algorithm returns a site and time-specific 
estimate of a single constituent, calibrated with in situ data points that can then be 
applied to each pixel in the image (Matthews 2011). These methods most commonly 
utilise one of three different approaches: empirical band regressions, spectral 
unmixing models and semi-empirical neural network models (Dornhofer & Oppelt 
2016).  

Empirical band regression uses either atmospherically corrected, i.e., water-leaving 
signal, or the raw satellite TOA signal regressed with in situ data. A successful 
example for this kind of algorithm is the estimation of Secchi depth (SD, units of 
metre) from Landsat imagery (Kloiber et al. 2002). SD is calculated using the ratio of 
Landsat bands 1 and 3 in the linear equation: 

Ln(SD) = a(TM1/TM3) + b(TM1) + c 

where TM1 and TM3 are the mean band reflectance values of pixels within a given 
distance of measured in situ locations (Zhao et al. 2011) and a, b, and c are 
constants estimated by regression. This algorithm has been successful in many 
complex water bodies, particularly the ‘10,000 Lakes’ region of Minnesota (r2 = 0.71 
– 0.96 for 280 samples ranging from 0.1 to 9.8 m) as reported by Olmanson et al. 
(2011). Generally, algorithms incorporating three bands have better accuracy in more 
complex waters than two-band algorithms (Lyu et al. 2015).  

Spectral unmixing models are particularly useful in optically complex waters where 
OACs co-occur and their constituent signatures overlap. For example, the spectral 
signatures of CDOM, TSS and chlorophyll a share peaks near 440 nm, 560 nm, 660 
nm and 700 nm, respectively, rendering the simple band regression problematic. The 
method is a multivariate regression technique in which the known spectra of pure 
chlorophyll a, CDOM and TSS are combined such that their sum reproduces the 
observed spectrum (Allan 2008; Tyler et al. 2006; Zhang et al. 2014). Zhang et al. 
(2014) used a four-endmember spectral decomposition model to retrieve chlorophyll 
a concentrations in Lake Taihu—a shallow, eutrophic lake in China. Tyler et al. (2006) 
carried out a retrospective analysis of chlorophyll a concentrations in Lake Balaton, a 
large shallow lake in Europe, using a spectral mixing model which was significantly 
correlated with in situ chlorophyll a samples above 10 mg m-3 (r2 = 0.95, 12 samples). 
Allan (2008) applied a linear spectral unmixing model to Landsat images of the 
Waikato region in order to obtain chlorophyll a estimates. Given the optical 
complexity of many Waikato lakes, a spectral unmixing approach was chosen and 
applied to Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images.  
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Another approach uses a neural network model to determine which satellite bands 
are most strongly correlated with the retrieved water-leaving radiance before 
applying a band regression (Dornhofer & Oppelt 2016). Matthews (2011) found that 
this approach improves the strength of the correlation, and if applied to 
atmospherically corrected data, can reduce errors associated with atmospheric 
scattering. Due to the additional neural network step, Matthews (2011) termed this 
approach semi-empirical. 

While often correlating well with in situ data, the major disadvantage of using 
empirical methods is that the resultant equations are strictly only valid within the 
temporal and spatial ranges of data used to build the models. The further the 
algorithm is applied across time or space, the greater the chance to encounter 
atmospheric and water-related conditions outside the initial range, leading to errors 
associated with the predictions (Allan 2008; Matthews 2011).  

Specifically, these models have been found to be unreliable in water bodies with 
particularly high or low concentrations of constituents, suggesting that non-linear 
relationships exist at the extremes (Chang et al. 2015). Further, empirical algorithms 
lack the ability to retrieve more than one parameter and are often unable to 
discriminate between covariant constituents (Matthews 2011). These disadvantages 
have been attributed to a shift in focus towards the development of analytical and 
semi-analytical algorithms (Chang et al. 2015).   

 

2.7.2 Semi-analytical algorithms 
Analytical algorithms use purely theoretical methods to estimate constituents, while 
semi-analytical methods strike a balance between the use of physical theory and the 
inclusion of in situ data (Olmanson et al. 2015). A major advantage for analytical and 
semi-analytical algorithms, as compared with empirical algorithms, is their ability to 
retrieve multiple constituents simultaneously using one algorithm (Matthews 2011). 
Semi-analytical algorithms are based on fundamental optical principles and often 
forward or inverse models to approximate the equation of radiative transfer.  

Forward models predict the spectral signature of water-leaving radiance based on 
the water column constituents and benthic reflectance, and inverse models predict 
the concentration of OACs based on the water’s spectral reflectance (Matthews 
2011; Dekker & Hestir 2012).  

Semi-analytical methods require knowledge of the specific optical properties of the 
water being studied, including inherent optical properties (IOPs) or apparent optical 
properties (AOPs), as well as in situ measurements for calibration and validation. 
IOPs, most importantly scattering and absorption, are properties of the water 
medium and independent of the surrounding light field (Dekker & Hestir 2012). These 
coefficients include scattering and absorption contributions from phytoplankton, 
CDOM, non-algal particles and pure water. AOPs, on the other hand, include 
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properties such as reflectance, and depend on the IOPs and the characteristics of 
the underwater light field (Wang et al. 2016).  

Semi-analytical algorithms can be time consuming and costly to develop, although 
many satellite sensor organisations now supply companion algorithms developed 
for use specifically with particular sensors. For example, NASA provides free data 
processing software for MODIS (SeaWiFS Data Analysis System (SeaDAS)) as well 
as offering specific algorithms. However, the local application of these to coastal 
waters in Canterbury has not been overly successful (Schwarz et al. 2010).  

Similarly, ESA offers a MERIS Case-2 bio-optical algorithm that has been applied to 
inland waters with limited success (Matthews et al. 2010; Odermatt et al. 2010). 
However, Keith et al. (2014) retrieved successful chlorophyll a estimates from 
estuaries in the United States using the algorithm (r2 = 0.84 - 0.87).  

The transferability of semi-analytical algorithms between sensors that share similar 
waveband locations and widths is another potential way to reduce the time and cost 
of algorithm development. Augusto-Silva et al. (2014) applied three bio-optical 
algorithms originally developed for MERIS imagery to simulated output expected 
from the Sentinel-3 sensor and found that two of the three algorithms were 
successfully transferable.  

The main disadvantages associated with semi-analytical algorithms include the 
larger data requirements, the sensitivity to errors arising from atmospheric 
correction and the error accrued from the estimation of IOPs (Matthews 2011).  

Allan (2014) identified the need for local IOP data in order to successfully develop 
regional bio-optical models, avoiding the uncertainty in using literature values and 
non-local data. A number of researchers have addressed the errors associated with 
IOP estimates by measuring site-specific IOPs and conducting bio-optical modelling. 
More details on bio-optical sampling can be found in Belzile et al. (2014), Gallegos et 
al. (2008) and Wang et al. (2016). However, bio-optical variability over time and 
between water bodies can result in poor performance when semi-analytical 
algorithms are used to extrapolate beyond the observational data set (Politi et al. 
2015).  

This means that no single bio-optical algorithm is likely to be applicable to all water 
bodies in a region or to neighbouring water bodies of different trophic levels. The 
high initial cost associated with the development of an algorithm is another 
disadvantage in addition to modelling errors. This is in part due to the collection and 
analysis of in situ samples for calibration, although there is expected to be little cost 
associated with the ongoing use of a validated algorithm and further in situ 
measurements should not be required (Dekker & Hestir 2012).  
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2.7.3 Recommended way forward 
In summary, there has been much discussion in the literature regarding the 
comparative applicability and feasibility of empirical vs. semi-analytical algorithms 
for the retrieval of inland water quality parameters, and all algorithms described have 
individual disadvantages. For example empirical algorithms lack wider applicability 
(Odermatt et al. 2012), while bio-optical algorithms may not be applicable to all lake 
types and trophic levels (Politi et al. 2015; Lyu et al. 2015).  

In conclusion, it is most effective to begin with the calibration and validation of 
empirical methods in the initial design of water quality monitoring programmes, 
because field observations of traditional water quality attributes are available. The 
preliminary data analysis shown below illustrates that an uncalibrated algorithm is 
already capable of estimating realistic concentrations.  

Sentinel-2a MSI captured a predominantly cloud-free image of the 
Manawatū-Whanganui region on the 9th January 2020 (New Zealand standard time). 
An uncalibrated algorithm for chlorophyll a (Mishra and Mishra 2012) was applied to 
this image (Figure 9), which estimates concentrations around 20 mg m-3 in lakes 
Pauri and Wiritoa. The maps also show that there is variability of chlorophyll a within 
lakes. This variability appears to be associated with nearshore pixels, which 
suggests that further effort should be dedicated to excluding pixels overlapping with 
the shoreline and those over shallow water. 

 

Figure 9: Lakes Wiritoa and Pauri in a Sentinel-2 MSI image from 9 January 2020. Data over water was 
processed to show the concentration of chlorophyll a (mg m-3) using an established algorithm not yet 
calibrated for these lakes.  

 

2.8 Case studies 
 
We have thus far described the satellites and sensors, the observable water quality 
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constituents, and the retrieval algorithms that are used to estimate water quality. 
This section summarises pertinent applications of remote sensing for water quality 
parameters in lakes, focussing specifically on New Zealand studies. 

 

2.8.1 Rotorua lakes and Lake Taupō 
A first case study involves lake monitoring in the Rotorua lakes and Lake Taupō. 
Allan et al. (2011) derived simple empirical relationships between remote sensing 
reflectances of Landsat 7 ETM+ wavebands and chlorophyll a, Secchi depth and 
turbidity, measured in situ in 12 lakes in the Bay of Plenty region and Lake Taupō 
(Waikato region). In situ samples from regular monitoring programmes were chosen, 
which fell within two days of two satellite overpasses (24 January 2002 and 23 
October 2002). Satellite pixels closest to the sampling locations were used.  

The approach of the study was to compare the goodness of fit of in situ water 
quality parameters with reflectances at the satellite wavebands (and also commonly 
used band ratios), and to test the sensitivity of the relationships to two types of 
atmospheric correction. The authors found that all in situ variables could be related 
to one of the remotely-sensed spectral bands using one of two atmospheric 
correction methods (Pearson correlation coefficients, between r = 0.84 and r = 0.98).  

The scatter plot in Figure 10 shows that log-transformed chlorophyll a 
concentrations can be derived using band 3 reflectance of Landsat 7, ETM+ and data 
pooled from all lakes and both image-capture dates (Figure 11). This relationship 
appears to hold over three orders of magnitude of chlorophyll a concentration.  

The results suggest that remote sensing may be used to observe lake water quality 
parameters at the regional scale across a wide range of trophic states 
simultaneously.  

One of the caveats of this study is that there was no single best retrieval algorithm 
for each variable, but the optimal method varied unpredictably depending on the date 
of the satellite overpass. This suggests that there is significant temporal variability in 
the dominant OACs affecting which retrieval algorithm to use, and that further 
ground truthing is needed.  
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Figure 10: The empirical retrieval algorithm recommended by Allan et al. (2011) is a linear regression 
of log-transformed chlorophyll a concentration against log-transformed reflectance of ETM+ band 3 
using 6sv atmospheric correction, r2= 0.80.  

 

Figure 11: Chlorophyll a concentrations (mg m-3) estimated for Lake Rotoiti (left) and Lake Rotoehu 
(right) by Landsat 7 ETM+ for 24 January 2002 using the regression shown in the scatterplot above. 
(Allan et al. 2011). 

 

2.8.2 Waikato lakes 
A second case study is focused on the Waikato region and covering lakes of similar 
size to those found in the Manawatū-Whanganui region. Hicks et al. (2013) used 
Landsat 7 ETM+ imagery to predict TSS, Secchi depth and turbidity in 34 Waikato 
lakes (including Lakes Waikare, Whangape, Waahi, Rotomanuka, Gin, Rotopiko, 
Rotokauri, Ngaroto, Maratoto, and Hakanoa) over a 10-year period (2000 – 2009). 
The authors developed regression relationships between in situ measurements and 
spectral reflectance over multiple lakes to find an overall relationship specific to the 
Waikato region that can be applied to local unmonitored lakes lacking in situ data. 
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Reflectance intensity in Band 4 from Landsat images at the locations of in situ 
samples were regressed against measured TSS in mg L-1 (r2 = 0.94), turbidity in 
nephelometric turbidity units (NTU; r2 = 0.92) and measured Secchi depth (r2 = 0.67). 
These empirical relationships were then used to hindcast water clarity predictions 
for the images without in situ measurements. Secchi depth was the most poorly 
predicted variable, most likely due to the interference of CDOM and suspended 
sediment (e.g., Allan 2008). 

Image pre-processing, including atmospheric correction,cloud detection and 
masking, was automated and applied to 53 images over 10 years. The results 
showed clear spatial variation within lakes which would have been missed in 
localised manual sampling (Figure 12). For example, the three in situ sampling points 
in Lake Waikare shown in the 9 Sep 2001 image did not sample the suspended 
sediment plume at the southern end of the lake that appears to have originated from 
flood waters of the Matahuru Stream (see Hicks et al. 2013 for more detail).  

 

Figure 12: Estimated TSS (mg L-1) in Lake Waikare on 9 September 2001 showing spatial variability 
and how in situ samples (black squares) can miss discharge plume from the Matahuru stream (Hicks 
et al. 2013). 

 

2.8.3 Lake Ellesmere  
A third case study investigated water quality in Lake Ellesmere. Allan (2014) used 
MODIS band 1 reflectance data to estimate suspended particle concentrations in 
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Lake Ellesmere, which is a large shallow turbid coastal lagoon (Figure 13). 
Semi-analytical and empirical algorithms were derived to determine spatial and 
temporal variations in suspended particles in the lake. Both algorithms predicted 
suspended particles similarly, but the semi-analytical model had the advantage of 
being applicable to different satellite sensors, spatial locations, and suspended 
particles concentration ranges.  

When compared to literature values of error in TSS estimation, this error is of a 
similar magnitude (e.g., 18 and 22% for MODIS Terra and Aqua 250 m resolution 
data respectively, in extremely turbid Gironde estuary, France (Doxaran et al. 2009)). 
This study suggested that the semi-analytical model used to estimate suspended 
particles can be applied over the existing archive and future images of the MODIS 
sensor for the purposes of environmental monitoring. 

 

Figure 13: MODIS estimated suspended mineral concentrations on 1 March 2007 (Allan 2014).  

 

2.8.4 Rotorua lakes 
A fourth case study is the long-term analysis of the Rotorua lakes. Lehmann et al. 
(2019) demonstrated the power of the long-term data archive of satellite imagery by 
analysing 18 years of Landsat-derived water clarity (Secchi disk depth) in lakes in the 
Bay of Plenty region (Figure 13). Several trends were statistically significant and 
towards clearer water, and only one lake showed significantly decreasing water 
clarity. 

Because the model was developed with regional applicability, the investigators were 
able to provide water clarity time series not only for the eight lakes which had a 
history of in situ sampling, but also for another 15 lakes, which are not routinely 
monitored. The availability of two decades of data for all of New Zealand enables 
such an analysis for all lakes in the country if a satisfactory algorithm for water 
quality attributes can be determined for the area of interest.  
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Figure 14: (Top) Secchi depth in the Rotorua lakes derived from a Landsat 8 OLI image taken on 28 
January 2018. Black dots indicate sampling sites monitored via the Bay of Plenty water quality 
monitoring programme. (Bottom) Time series of satellite-derived Secchi depth in Lake Rotorua. Grey 
lines connect all available observations. Red dotted lines are linear fits through the summer averages 
(red circles) and black dashed lines are linear fits through the annual averages (black asterisks).  

 

2.8.5 All New Zealand lakes 
A final case study deals with monitoring all New Zealand lakes above 1 hectare (ha, 
10,000 m-2) in area which could be resolved in Landsat imagery. Lehmann et al. 
(2018) published the first comprehensive assessment of lake water colour in New 
Zealand based on four years of satellite observations. The researchers found that 
New Zealand’s lakes span close to the full global range of possible water colours; 
some lakes have a stable blue or yellow colour, while others show very strong 
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variability related to seasonal and episodic events which may be driven by 
agriculture, forestry, invasive species and climate change. 

Water colour lends itself as an intuitive water quality attribute that can be measured 
from all lakes without knowledge of the optical water type. In addition, it is a 
promising attribute for outreach and citizen science purposes as it is easy to 
communicate and can be measured using simple devices on the ground.  

New Zealand lake colours for August 2016 are shown in Figure 15. Figure 16 shows 
water colour data for Lake Dudding as an example for a practical water colour 
monitoring application. This analysis was performed according to Lehmann et al. 
(2018); Appendix C contains plots for the other lakes in the region.  

 
Figure 15: Colour of 1486 lakes determined from Landsat 8 satellite images taken in August 2016. 
Colour is expressed as dominant wavelength, an intensification of the colour as perceived by the 
human eye.  
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Figure 16: Four years of colour data from Lake Dudding determined from Landsat 8 OLI data 
according to Lehmann et al. (2018). Time series (top two panels) as well as location in the colour 
space (horseshoe-shaped plot in the bottom right) are shown. Histograms and box plots assist in 
detecting pollution or a bloom event. FU index: Water colour in the Forel-Ule colour system; dominant 
wavelength: intensification of the colour as perceived by the human eye in units of nanometers (nm); 
x and y are chromaticity coordinates of the standard colorimetric system of the Commission 
Internationale de l’Éclairage (CIE 1932). LID: FENZ lake ID. Appendix C contains plots for the other 
lakes in the region.  
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3. Number of lakes and 
frequency of satellite 
observations  
 

In principle, a water body is suitable for remote sensing if the surface area is large 
enough to include water-only pixels and deep enough to preclude interference from 
bottom reflection. In practice, this depends on the size and shape of the water body, 
the characteristics of its bathymetry, and its water clarity.  

Furthermore, a consideration for large lakes may be whether they lie fully within the 
swath width of a satellite sensor, such that the entire water body can only be 
mapped in consecutive overpasses (Figure 3).  

Finally, feasibility of reliable monitoring depends on the occurrence of clouds and the 
frequency of overpasses of the satellite.  

This section provides information on the extent to which lakes of the 
Manawatū-Whanganui region are visible by the remote sensing satellites that are 
considered in this study.  

3.1 Manawatū-Whanganui lakes visible from space 
 
There are 226 water bodies greater than 1 ha classified as lakes in the 
Manawatū-Whanganui region (Figure 17) according to the Freshwater Ecosystems 
New Zealand geo-database (FENZ geo-database, Leathwick 2010). Effectively, the 
remotely visible area is reduced by extending the shoreline inwards by the width of a 
satellite pixel (e.g., 10 m, 30 m or 300 m, depending on satellite resolution) to avoid 
contamination of the upwelling radiance by signals from the shoreline and the 
bottom.  
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Figure 17: Lakes greater than 1 ha in the Manawatū-Whanganui. Lakes currently monitored by 
Horizons Regional Council are shown in red. Lakes marked with dots have been found to contain a 
large enough area of open water to yield usable data at 30 m pixel size characteristic of the Landsat 
multispectral imagers. Lakes without black dots are too small for open water pixels at 30 m 
resolution. 
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For example, Figure 18 illustrates that Lake Dudding is large enough to yield 
water-only pixels using 30 m spatial resolution (Landsat OLI pixels), but not at 300 m 
MODIS or OLCI resolution. Using a semi-automated approach, we found that 57 lakes 
in the region had enough open water for reliable retrieval of water quality estimates 
at 30 m pixel size characteristic of the Landsat multispectral instruments (Lehmann 
et al. 2018). These 57 lakes are identified in Figure 17. Appendix A contains the list 
of FENZ lake IDs and lake names, where available, and Appendix B shows maps of 
the lakes for illustration of the spatial scales.  

The number of observable lakes can be increased using sensors with higher spatial 
resolution, such as MSI (Sentinel-2, 10-20 m) or commercial sensors (e.g., Airbus 
Pléiades, 2 m). These higher-resolution sensors provide significant opportunities to 
map more water bodies as well as spatial patterns within lakes, such as patchy algal 
blooms and point sources of contamination. All but the three largest lakes of the 
region (Lakes Moawhango, Horowhenua and Otamangakau) are too small to be 
resolved by sensors with better spectral resolution, such as OLCI (Sentinel-3) and 
MODIS. 

 

Figure 18: Example maps of Lake Dudding, which show the size and geometry of the lake for 
successful retrieval of satellite data. Left panel: Closeup of the lake with outlines provided in the FENZ 
geodatabase. The circles have diameters of 50 and 400 m, respectively, and are placed at the 
geometric center of each lake. Grid spacing is 30 m, showing pixel size characteristic of the Landsat 
multispectral instruments. Right panel: Lake and catchment outlines as provided in the FENZ 
geodatabase on a Landsat 8 OLI image. Maps for all other lakes visible from space are provided in 
Appendix B.  
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3.2 Expected frequency of satellite observations 
 
We have shown how to calculate the minimum lake size that can be detected by 
sensors of varying spatial resolution. The next consideration is to determine whether 
a lake can be imaged at sufficient enough frequency.  

The return periods of the satellite (Table 2) and site location within the overlapping 
image swaths determine the upper limit of the number of images that can be 
collected per month for a given lake. We use the term ‘upper limit’ because this does 
not account for the missed imaging opportunities due to obstruction by cloud cover.  

The upper limit in image frequency varies from daily to twice per month for the 
sensors commonly used for water quality studies. For example, the 
Manawatū-Whanganui region is covered by three image swaths of the Sentinel-2 MSI 
sensor (Figure 3). As the constellation of the two Sentinel-2 satellites has a 
combined return period of five days, the theoretical image yield is two to three days 
at best in swath-overlapping areas and five days elsewhere.  

As previously stated, cloud cover reduces the number of possible imaging 
opportunities and has to be taken into account when determining the feasibility of 
satellite monitoring. Cloud cover varies seasonally and within the region, so that 
lakes have different probabilities of being under a clear sky.  

To estimate expected image yield for any lake during the months of the year, we 
used three years of daily percentage of clouds in the MOD06_L2 data product. This 
product has a resolution of 1 km and is produced from daily imagery from the MODIS 
Terra satellite taken at approximately 10:30 local time. Figure 19 shows the expected 
number of days in January with less than 20% cloud cover as an example. The orbits 
of most imaging satellites (e.g., Landsat 8 and Sentinel-2) pass over close to 10:30 in 
the morning; and we found that 20% cloud cover provides usable data over at least a 
portion of a lake, most of the time.  

44 



 

Figure 19: Expected number of days in January with less than 20 percent cloud fraction during the 
morning hours. Lakes currently monitored by Horizons Regional Council are shown in red. Lakes 
marked with dots have been found to be visible by at 30 m pixel size characteristic of the Landsat 
multispectral imagers, while those without dots would not be visible with 30 m pixel sizes. 

By combining the theoretical image frequency and the cloud cover statistic, an 
expected image yield for Sentinel-2 MSI can be calculated for the entire region 
(Figure 20). Extracting the image yields at the location of each lake shows that most 
lakes are expected to be successfully imaged at least once per month using the 
Sentinel-2 pair of satellites (Table 3), although there may be some gaps during 
September to November. 
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Figure 20: Expected number of clear images of Sentinel-2 in the Manawatū-Whanganui region for the 
month of January. The black grid on the map shows the area covered in individual downloadable MSI 
data files (image tiles); image tiles overlap by about 10 km. The diagonal discontinuity is due to 
overlap in adjacent satellite overpasses, causing a higher number of clear images per month.  
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Table 3: Expected number of images from Sentinel-2 MSI per year and for each month for currently 
monitored lakes. Most lakes can be imaged at least once per month (green cells). See Appendix for 
expected number of images per year for 57 lakes of the region.   

 

Name 

 

Images 
per year 

Images per month 

Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec 

Lake Alice  15.2  0.8  1  1.6  2  1.4  1.6  1.8  1.6  0.6  0.4  1  1.4 

Lake Dudding  16.4  0.8  1  1.6  1.8  1.8  1.8  2  2  1  0.4  0.8  1.4 

Lake Heaton  16.4  0.8  1  1.6  1.8  1.8  1.8  2  2  1  0.4  0.8  1.4 

Lake Herbert  16.4  0.8  0.8  1.6  2  1.6  1.8  2  1.8  0.8  0.6  1  1.6 

L.Horowhenua  13.8  1  1  1  1.4  1.4  1.2  1.2  1.4  1  0.6  1  1.6 

Lake Kohata  36  3.2  2  3.2  4  3.2  3.2  3.2  4.4  2.4  1.2  2.4  3.6 

Lake Koitata  40.4  2.8  2.8  4  4  3.6  3.6  4  4.4  2.8  2  2.4  4 

Lake Koputara  17  1  0.8  1.6  1.6  1.6  1.6  2  1.6  1.2  0.8  1.4  1.8 

Lake Pauri  17.6  1.4  1  1.6  2  1.6  1.6  1.8  2  1  0.6  1.2  1.8 

Lake Waipu  36.8  2.4  2.8  3.6  4  3.2  3.2  3.6  4.4  2.4  1.2  2.4  3.6 

L. Westmere  35.6  2.4  2.4  3.6  3.2  3.6  4  3.2  4.4  1.6  1.6  2  3.6 

Lake William  16  0.8  1  1.6  2  1.8  1.8  1.8  1.6  0.8  0.6  0.8  1.4 

Lake Wiritoa  36  2.8  2  3.2  4  3.2  3.6  3.2  4  2  1.6  2.8  3.6 

Omanuka L.  16.4  1.2  1.2  1.6  1.8  1.2  1.6  1.8  1.8  1.2  0.6  1  1.4 

Pukepuke L.  18.4  1.2  1.2  1.6  1.8  1.4  1.8  2  2  1.2  0.8  1.4  2 

 

A similar analysis had been carried out previously for Landsat satellites, which have 
a return period of 16 days and also an area of swath overlap. While the image yield 
of the Landsat satellites is much lower, they have been imaging New Zealand 
regularly since 1999, providing a valuable archive for retrospective studies. This is 
illustrated in Section 4.    
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4. Practical implementation  
 

In Sections 2 and 3, we described the theory related to remote sensing of lake water 
quality. We answered the following two questions: Which key water quality attributes 
can be measured by satellites? And, how many lakes can be observed and at what 
frequency?  

In this section, we describe some practical considerations that Horizons Regional 
Council should consider when implementing a lake monitoring programme based on 
remote sensing.  
 

4.1 Integrating in situ monitoring data with match-up images 
 
A first practical consideration is how to integrate current and historical in situ data 
collected via existing monitoring programmes. This is critical to the success of 
remote sensing methods, because water quality parameter retrieval depends on 
ground truth measurements for calibration and validation. Ideally, a suite of in situ 
optical measurements in combination with measurements of chlorophyll a, TSS and 
CDOM are required to determine optical water types.  

Horizons Regional Council has collected water quality monitoring data from 15 lakes 
at intervals from three to five months. Monitoring started at different times in 
different lakes, with the earliest start date of July 2013 (Lake Horowhenua) to the 
latest in March 2016 (Lake Westmere). Observed parameters relevant for calibration 
and validation of remote-sensing-retrieved attributes include Secchi depth, black disk 
depth, TSS (organic and inorganic), turbidity and chlorophyll a.  

It is suggested to increase the frequency of sampling these attributes, enhance 
sensitivity of TSS measurements and add absorption measurements for the 
quantification of CDOM (Davies-Colley & Vant 1987). Chlorophyll a data from four 
example lakes from this monitoring is shown in Figure 20.  

Existing in situ data can be readily integrated with satellite data, providing an 
opportunity to calibrate retrieval algorithms and backcast historical lake quality 
trends over decadal time scales.  

This approach was taken by Lehmann et al. (2018), who analysed all satellite 
imagery collected over New Zealand by the Landsat satellites (Landsat 5, 7 and 8) 
and extracted cloud-free data over lakes up to January 2018. An illustration of the 
information gained over and above field-based sampling is provided in Figure 20, 
where the availability of cloud-free Landsat data is marked on the in situ chlorophyll 
a time series for four lakes. 
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Matched data, i.e., a cloud-free Landsat image within two days of the in situ 
sampling, was found to exist between two and ten times per year for each lake 
(Appendix 1). Table 4 lists the matching dates for these four lakes, as shown in 
Figure 20. Note that Landsat data from February 2018 onwards is not shown in this 
figure because it is based on work carried out previously. 

Therefore, it is concluded that Horizons Regional Council is well-positioned to 
leverage its existing monitoring programme and data archive to deliver a marked 
increase in effectiveness, cost-efficiency and scale via satellite monitoring.  

 
Figure 20: Chlorophyll a time series from water quality monitoring of four lakes by Horizons Regional 
Council, plotted as connected black circles. The red dots indicate the availability of Landsat satellite 
data. Note that the Landsat dots are placed on the line connecting the in situ data points or at zero 
and do not indicate an observed chlorophyll a concentration. Landsat images after January 2018 are 
available, but have not been analysed. 
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Table 4: Dates during which in situ samples fall within two days of a clear Landsat image for the four 
lakes shown in Figure 20. The number of matched observations for 56 other lakes within the 
Manawatū-Whanganui region are provided in Appendix A.  

 Lake name 
Date of 

 in situ sampling 
Date of  

Landsat image 

 Dudding  28/08/14  29/08/14 

 Dudding  28/05/15  29/05/15 

 Dudding  24/11/16  23/11/16 

 Dudding  24/05/17  25/05/17 

 Dudding  23/08/17  22/08/17 

 Horowhenua  27/02/14  27/02/14 

 Horowhenua  5/08/14  5/08/14 

 Horowhenua  14/10/14  16/10/14 

 Horowhenua  7/11/14  9/11/14 

 Horowhenua  25/03/15  25/03/15 

 Horowhenua  19/04/16  21/04/16 

 Horowhenua  23/06/16  24/06/16 

 Horowhenua  4/10/16  5/10/16 

 Horowhenua  22/08/17  22/08/17 

 Horowhenua  15/11/17  17/11/17 

 Westmere  3/03/16  3/03/16 

 Westmere  2/08/16  2/08/16 

 Westmere  21/09/16  20/09/16 

 Pukepuke L.  3/03/16  3/03/16 

 Pukepuke L.  2/08/16  2/08/16 
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4.2 Coordinating ground sampling with satellite overpasses 
 

Satellites make repeated observations over a large area of interest. For Sentinel-2, 
the entire Manawatū-Whanganui is imaged every five days. Clearly, in situ monitoring 
teams can not ground truth every overpass, nor do they need to.  

Furthermore, it is impractical to wait until a suitable cloud-free observation has been 
received to deploy field teams for ground-truthing, as this would be an inefficient use 
of personnel, equipment and resources.  

Instead, existing in situ monitoring schedules should be coordinated in order to align 
with known satellite overpasses and predicted weather windows (e.g., limited cloud). 
This increases the chances of obtaining in situ water samples for direct comparison 
with satellite-derived estimates, while not adding any additional burden to existing 
field operations.  

The schedules of satellite overpasses are predictable and can often be looked up 
online. Images are usually available for download within hours of acquisition but 
may take up to a day or more.  

For lakes in the Manawatū-Whanganui region, Sentinel-2 and Landsat 8 are the 
satellites of choice due the spatial resolution of their instruments on the order of 
tens of meters.  

The acquisition plans for Sentinel-2 a and b are provided as respective KML files for 
10 to 15 day periods on an ESA website . These files can be opened in Google Earth 3

and provide data acquisition areas and times in UTC. In addition, ESA also provides 
the mobile app Copernicus Sentinel , which allows determination of recent and 4

near-future overpass information for the whole fleet of Copernicus satellites. Finally, 
Sentinel-2 overpasses can be predicted simply by adding multiples of 5 days to a 
known date of an image of the area of interest.  

Landsat 5 and 8 have a revisit period of 16 days, respectively, and the time of data 
acquisition of a specific area of interest can be looked up on a USGS website . 5

Adding multiples of 16 days to a known date of an image of the area of interest can 
also be used to predict future overpasses.  

It is important to note that dates and times of satellite overpasses are given in 
Coordinated Universal Time (UTC), which, for practical purposes, is the same as 
Greenwich Mean Time (GMT). The satellites discussed in this report all have an 
acquisition pass at the same time of day, usually late morning at local time.  

3 https://sentinel.esa.int/web/sentinel/missions/sentinel-2/acquisition-plans  
4 https://itunes.apple.com/it/app/esa-sentinel/id1036738151?mt=8 and 
https://play.google.com/store/apps/details?id=esa.sentinel&hl=it  
5 https://landsat.usgs.gov/landsat_acq  
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For practical purposes, any field samples taken on the same day as a satellite image 
are considered matchups. However, the suitability of samples to serve as matchups 
depends on the local scale of variability to the measured property and thus the 
matchup window may be reduced or extended.  

For example, chlorophyll concentration may be stable over weeks during winter and 
increase markedly from day to day during spring; and shallow lakes may be sensitive 
to wind-driven resuspension of bottom particles within hours. Therefore, the 
assumptions of representativeness of a sample taken at a certain time that applies 
to in situ samples also applies to remotely sensed attributes.  

As a rule of thumb, images taken between a day before and a day after the in situ 
samples are often considered matchups. The matchup time window is commonly 
assessed during algorithm development and should be stated in comparisons of 
remotely versus in situ observations.  

4.3 Providing additional insight through catchment-scale 
context  
 
A second practical consideration and opportunity when using remote sensing for 
lake water quality monitoring is the ability to interpret changes in lake water quality 
in the context of catchment scale processes.  

Land applications are illustrated using the image from March 2018 in a map of the 
normalised difference vegetation index (NDVI) (Figure 21, left panel). This index 
measures the health and density of vegetation using the red and near infrared 
channels from a multispectral sensor (Chuvieco 2016). Much of the region in this 
map has NDVI > 0.5 suggesting healthy and dense vegetation. In contrast, urban 
areas, water and shorelines have low NDVI. Some fields or paddocks also show low 
NDVI suggestive of grazing, tilling or spraying activities.  

Observing the temporal change in vegetation is possible by comparing NDVI 
between images, e.g., spring (November 2017) to summer (March 2018). NDVI in 
much of that region did not change significantly, and most of the change that did 
occur indicates vegetation growth over the summer (Figure 21, right panel). This 
information is valuable to interpret changes in lake water quality in the context of 
catchment scale processes. Grazing, logging and habitat restoration all have NDVI 
signatures and may point towards pressures that drive lake water quality.  
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Figure 21: (Left) Normalised difference vegetation index (NDVI) of the region south of Whanganui. 
(Right) True colour rendering of the region with areas highlighted which have undergone an increase 
or decrease, respectively, in vegetation between November 2017 and March 2018.  

4.4 Automated processing of satellite data  
 
A final practical consideration is how to automate the processing of large volumes 
of satellite data to provide timely water quality attributes.  

Satellite data is collected regularly and made available to users through 
well-developed file servers. Water quality products suitable for lake monitoring, 
however, are not included in the data, therefore further processing is needed. 

The data processing tasks required for environmental monitoring were listed in 
Section 2.6. This processing is a technical task which requires the handling and 
management of large data sets and experience in spatial analysis. Two approaches 
can be taken: manual and automated processing.  

Manual image-by-image processing can be performed by point-and-click navigation 
of software based on graphical user interfaces, but the effort involved makes it 
poorly suited to operational monitoring, and the choice of tools depends on various 
factors, including the data source.  

Automated processing leverages routine collection, distribution and analysis of 
satellite data via application programming interfaces. Automated methods are 
therefore efficient and cost-effective, returning dividends beyond the initial 
investment in setup.  
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Ideally, such an automated processing engine sits in the centre of an efficient, 
scalable, and cost-effective framework for operational monitoring of lake water 
quality (Figure 22).

 

Figure 22: Automation of the download and processing of satellite data (red shaded area in the 
middle) is the central component of the framework for operational monitoring of lake water quality. 
The output can be designed to meet specific needs such as alerting to algal blooms or long-term 
monitoring.  

Our discussion of the practical implementation of lake water quality monitoring in 
this section can be summarised as follows.  

First, existing in situ data can be readily integrated with satellite data, providing an 
opportunity to calibrate retrieval algorithms and backcast historical lake water 
quality trends over decadal time scales.  

Second, satellite imagery provides the synoptic perspective to interpret changes in 
lake water quality in the context of catchment scale processes.  

And finally, automated methods are now possible, which make satellite monitoring 
efficient and cost effective, returning dividends beyond the initial investment in 
setup.  

These considerations indicate that Horizons Regional Council is well-positioned to 
realise the full potential of satellite observations, if financial planning provides 
consideration for expert consultation and software development. 
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5. Conclusion 
 

Satellite monitoring of lakes provides reliable states and trends of water 
quality from more lakes, at a higher frequency and at greater spatial 
fidelity, compared to what is feasible using ground-based methods.  

 
This report investigated the feasibility of using satellite remote sensing for 
monitoring lake water quality in the Manuwatū-Whanganui region.  

This feasibility was evaluated by estimating how many lakes can reliably be resolved 
by available satellite sensors, and how much data can be expected, considering 
regional and seasonal cloud cover statistics.  

In addition, the principles of remote sensing of water quality attributes were reviewed 
to illustrate the fundamental principles underlying the accuracy and uncertainty of 
satellite-based estimates. 

The main conclusions from this report are: 

1. In the region, at least 57 lakes are large enough to be monitored by satellite. 

Of the 226 lakes in the Manawatū-Whanganui region, 57 have large enough 
open-water areas to be resolved by 30 m pixels typical of Landsat sensors.  

Additional smaller lakes are likely visible in 10 m Sentinel-2 MSI resolution images.  

All lakes currently included in the Horizons Regional Council water quality monitoring 
programme can be monitored.  

2. Better-than-monthly monitoring frequency is expected for most lakes. 

Satellite revisit periods and regional cloud cover statistics suggest that Sentinel-2 
satellites will successfully image all lakes at least once per month with a few 
exceptions.  

Some lakes are expected to yield up to four images per month during certain times 
of the year.  

3. Common water quality attributes can be predicted from satellite data. 

Attributes that are commonly derived from satellite data include chlorophyll a, 
suspended particulate matter, Secchi disk depth, water colour and turbidity. Several 
other observations, such as cyanobacteria blooms, macrophyte presence and 
floating algae can also be developed.  
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Additionally, satellites can map the spatial variation in water quality across a lake, 
which may reveal important blooms that are missed by point-based sampling. Visual 
images of the lake and catchment provide a wealth of intuitive information to experts 
and stakeholders.  

 

4. Satellite-derived water quality attributes can match in situ samples with 70-90% 
accuracy  

The accuracy of satellite estimates must be established using in situ observations. 
Depending on the water type and the availability of data for calibration, good 
prediction accuracies can be obtained with sufficient investment which are best 
facilitated through close partnership between councils and a research organisation.  

Despite high accuracies, satellite-based data are not yet accepted by the Ministry for 
the Environment State of the Environment Reporting. We hope that subsequent 
collaboration could lead to greater confidence around satellite-based monitoring 
accuracy, opening the door to better and more streamlined reporting to statutory 
monitoring requirements. 

 

5. Automation of data processing makes satellite monitoring efficient and 
cost-effective 

Satellite data are routinely collected and are accessible using application 
programming interfaces. Significant processing is required to derive water quality 
attributes, which can be automated in the cloud or dedicated desktop machines to 
produce end-user products.  

In conclusion, Horizons Regional Council is well-positioned to leverage its existing 
monitoring programme and data archive to deliver a marked increase in 
effectiveness, cost-efficiency and scale using satellite monitoring.  
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Appendix A 
 

Lakes visible from space at 30 m pixel resolution 
Of the 226 lakes in the Manawatū-Whanganui region, 57 have been found to be 
visible in satellite data with at least 30 m spatial resolution (Lehmann et al 2018). 
These lakes are listed below with pertinent information taken from the FENZ 
geodatabase (Leathwick 2010). The number of satellite images that could be 
collected per year was calculated using monthly cloud cover statistics and orbit 
characteristics of the Sentinel-2 satellite constellation. Landsat matchups is the 
number of in situ samples collected at each lake within two days of a clear Landsat 
image (for the 15 lakes in the Horizons lake monitoring programme).  

 

Lake ID  Name   Type 
Area 
(ha) 

Elevation 
(m) 

Max. depth 
(m) 

Images 
per year 

Landsat 
matchups 

 476 
Tokomaru No 3 
Reservoir   Dam  9.5  357.6  23.7  8.4  

 869      Aeolian  5.3  10.0  2.9  17  

 871      Aeolian  4.0  10.0  2.9  16.8  

 877      Aeolian  2.4  18.7  3.0  13.6  

 1962      Aeolian  4.3  15.2  2.8  17.4  

 1972        2.0  20.0  7.6  16.2  

 1974  Lake Papaitonga   Aeolian  51.5  19.7  6.8  13.2  

 4342 
Mangahao Upper No 1 
Reservior   Dam  19.5  373.4  35.2  7.8  

 4345  Lake Horowhenua   Aeolian  304.0  19.9  1.8  13.8 10 

 4358      Aeolian  2.5  20.0  2.9  16.4  

 4365      Aeolian  1.9  20.0  2.9  16  

 4380        10.0  11.3  0.0  16.8  

 4486      Aeolian  9.7  10.4  2.9  17  

 4560      Dam  1.9  290.7  26.2  14.8  

 4913      Dam  2.1  19.2  3.3  12.4  

 4926  Turitea Dams b   Dam  11.4  185.3  27.1  8.2  

 5008  Lake Koputara   Aeolian  9.4  10.0  2.9  17 4 

 5014  Lake Kaikokopu   Aeolian  14.7  10.2  3.0  17.2  
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 5042  Pukepuke Lagoon   Aeolian  17.9  10.2  3.0  18.4 2 

 5306  Omanuka Lagoon   Aeolian  11.0  28.9  3.4  16.4 4 

 5610      Dam  1.6  119.6  21.5  17.8  

 5955  Rotoataha Lake   Riverine  2.7  336.3  30.0  13.2  

 13437  Lake William   Aeolian  6.8  105.8  11.8  16 2 

 13438  Lake Bernard   Aeolian  8.0  79.4  23.4  16  

 13443  Lake Vipan   Aeolian  6.7  80.0  8.4  16.8  

 13446  Lake Heaton   Aeolian  14.4  97.2  11.7  16.4  

 13447  Lake Dudding   Aeolian  7.8  91.8  19.7  16.4 5 

 13456  Lake Alice   Aeolian  11.9  116.3  9.1  15.2 3 
 16901  Lake Koitata   Aeolian  9.6  18.0  3.6  40.4 4 

 16939  Lake Waipu   Aeolian  7.0  20.3  7.0  36.8 2 

 17014  Lake Rotokauwau   Aeolian  6.6  88.8  11.7  32.4  

 17214  Lake Kohata   Aeolian  5.2  47.9  6.6  36 2 

 17286  Lake Poroa   Riverine  7.1  357.6  27.1  28.8  

 17363  Lake Herbert   Aeolian  4.7  95.5  9.3  16.4 3 

 18023  Marron Reservoirs a   Dam  12.3  236.8  22.1  14.8  

 18027  Marron Reservoirs b   Dam  6.1  245.1  21.1  14.6  

 18606      Peat  1.5  820.0  15.1  25.2  

 18608      Volcanic  7.2  697.5  17.8  16.8  

 18609  Lake Rotokuru   Volcanic  5.8  714.0  9.9  17  

 18610  Lake Moawhango   Dam  485.8  851.8  47.7  16.6  

 18933  Lake Pauri   Aeolian  19.2  57.6  7.9  17.6 6 

 18934  Lake Wiritoa   Aeolian  21.8  51.1  28.9  36 6 

 18936  Kaitoke Lake   Aeolian  25.3  15.8  14.0  36  

 18951  Lake Westmere   Aeolian  8.1  96.2  23.4  35.6 3 

 18957  Lake Virginia   Aeolian  7.0  59.4  16.2  34.4  

 19140      Peat  3.8  114.5  23.9  30.8  

 19621  Lake Ngaruru   Riverine  7.8  157.8  24.1  14.4  

 19624  Lake Namunamu   Riverine  12.9  200.2  22.8  14.6  

 19921      Dam  2.2  280.3  9.7  26.4  

 20094  Lake Maungarataiti   Landslide  4.1  239.3  26.0  14.4  

 20096  Lake Maungaratanui   Landslide  6.3  260.8  23.8  15  

 20693        2.8  648.4  0.0  14.4  

 20720      Volcanic  2.9  574.4  17.6  24.8  
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 20741  Lake Hawkes   Landslide  3.1  392.7  23.9  30.8  

 21383  Lake Otamangakau   Aeolian  156.3  607.3  32.6  15.2  

 31847      Dam  3.2  378.4  12.2  16.8  

 34051 
Lake Colenso 
(Kokopunui)   Landslide  3.5  721.1  18.4  11.2  
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Appendix B 
 
Maps of lakes visible from space at 30 m pixel resolution 
Maps of 57 lakes with open water areas large enough to accommodate 30 m pixels.  

Left panel: Closeup of the lake with outlines provided in the FENZ geodatabase. The 
reference circles have diameters of 50 and 400 m respectively and are placed at the 
geometric center of each lake.  

Due to the scale, some figures do not show the larger circle. Furthermore, due to the 
irregular shape of some lakes, the geometric center may not be a good location for 
data retrieval.  

Grid spacing is 30 m. Right panel: Lake and catchment outlines as provided in the 
FENZ geodatabase on a Landsat 8 OLI image. 
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Appendix C 
 
Water colour time series for lakes  
Four years of colour data for 57 lakes from Landsat 8 OLI data according to 
Lehmann et al. (2018). Time series (top two panels) as well as location in the colour 
space (horseshoe-shaped plot in the bottom right) are shown.  

Histograms and box plots assist in detecting pollution or bloom event.  

FU index: Water colour in the Forel-Ule colour system; dominant wavelength: 
intensification of the colour as perceived by the human eye in units of nanometers 
(nm); x and y are chromaticity coordinates of the standard colorimetric system of the 
Commission Internationale de l’Éclairage (CIE 1932). LID: FENZ lake ID. 

 

Further details are provided in Section 2.8.5.  
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