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Executive summary 
A key step in the process of implementing the National Policy Statement for Freshwater 
Management 2020 (NPS-FM) is “to identify the baseline state” for a suite of attributes (clause 3.10). 
Attributes are measurable characteristics (e.g., nitrate-nitrogen concentration) used to assess the 
extent to which a certain freshwater value (e.g., ecosystem health) is provided for within a river or 
lake. Under the National Objectives Framework (NOF) of the NPS-FM, attribute state is generally a 
summary statistic (e.g., median) that is calculated from measurements or observations made 
regularly (e.g., monthly) over a fixed period (e.g., five-years). The calculated attribute state can also 
be expressed as a category that represents one of four or five numerically defined bands (A to D or A 
to E). In many cases, the NOF stipulates a minimum acceptable state (or national bottom line) for an 
attribute. 

Baseline attribute states (BAS) provide benchmarks against which regional councils and communities 
can set the future target states that attributes must attain to achieve the environmental outcomes 
councils have set for freshwater values. The setting of a target attribute state (TAS) must be 
consistent with the direction of Policy 5 of the NPS-FM to at least maintain the health and well-being 
of water bodies and, where they are degraded, improve them. This means that, at a minimum, a TAS 
cannot be set lower than a BAS. Further, where a BAS is worse than the national bottom line (NBL) 
specified for an attribute in the NPS-FM, the TAS must be set above the NBL. Councils must monitor 
and regularly assess current attribute states (CAS) to track progress towards meeting the 
corresponding target states. The datasets used to estimate baseline and current attribute states for a 
given site take the form of time-series, or repeated observation of an attribute value made at 
multiple points in time over a given period (e.g., monthly observations at a river monitoring site over 
a five-year period). 

Subclause (4) of clause 3.10 of the NPS-FM states:  

“attribute states and baseline states may be expressed in a way that accounts for natural 
variability and sampling error”.  

The terms “natural variability” and “sampling error” are not defined and existing national guidance 
does not address how subclause (4) might be implemented by councils. Horizons Regional Council, 
on behalf of all regional councils, sought an MBIE Envirolink advice grant for NIWA to convene an 
expert panel to discuss how clause 3.10(4) might be implemented. The primary tasks of the expert 
panel were to: 

§ define “natural variability and sampling error” in the context of NPS-FM attribute state 
assessments, and 

§ determine how numeric attribute state might be expressed in a way that accounts for 
natural variability and sampling error. 

It was acknowledged in the advice grant application that the workshop discussions would likely only 
lead to preliminary advice to support implementation of clause 3.10(4). As such this report 
represents a starting point to inform the development of any subsequent national guidance. 

Clause 3.10(4) – intent and key terms 
Clause 3.10(4) clearly applies to baseline attribute states. The term “attribute states” in subclause (4) 
is not defined and therefore could also relate to current attribute states and/or target attribute 
states).  
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Natural variability is the variation in values of an attribute caused by natural processes. For example, 
river flows and nutrient concentrations exhibit natural variability over space and time due to 
weather, climate, and physical and ecological processes. Natural variability is independent of human 
influences or measurement error. The focus of the expert panel for the purpose of this report was 
primarily on temporal variability in attribute states at the scale of individual monitoring sites. 

Natural variability of an attribute occurs over a range of timescales (e.g., diel cycles, seasonal cycles, 
and interannual variability associated with naturally occurring trends or climatic cycles). In addition, 
natural variability is associated with irregularly spaced events such as floods or droughts (where 
these are not anthropogenically-driven). Variability at interannual time-scales can be seen in 
attribute time-series plots, such as those presented in this report, often in the form of monotonic 
trends and cyclic fluctuations.  

The NPS-FM requires a BAS to be set with a specific end date, but no starting dates or assessment 
periods are specified. Natural drivers can generate cyclic fluctuations in attribute state, and the 
period used for estimating a BAS can coincide with different portions of the cycle (e.g., at or near a 
peak or trough). The estimated BAS has important consequences for councils and communities given 
that the corresponding TAS must be set at or better than the baseline state, and this in turn will 
influence the nature and extent of limits imposed on resource use. 

Not all temporal variability is natural, and natural and anthropogenic drivers can interact, which 
makes partitioning natural and anthropogenic variability impractical. For this reason, the term 
“environmental variability” might be more appropriate than “natural variability”.  

Sampling error is statistically defined as the difference between a sample statistic used to estimate a 
population parameter and the actual, but unknown, value of that parameter. In the context of the 
NPS-FM, the sample statistic is the NOF summary statistic (e.g., median, 95th percentile) used to 
represent the numeric attribute state. This statistic is only an estimate of the ‘true’ attribute state 
because it is calculated from a limited number of measurements over a finite assessment period. This 
means that uncertainty due to sampling error will always be associated with sample-based estimates 
of attribute state. 

The uncertainty associated with sampling error is commonly quantified using a measure of precision, 
such as a confidence interval (CI) around the estimated attribute state. The use of CIs and other 
inferential statistics requires that the samples comprising the time series are independent and that 
the distribution is stationary (e.g., the statistical properties of the time series do not change over the 
assessment period). In the case of NOF attribute time-series, these requirements are likely to be 
violated, as indicated by long-term trends and seasonal and inter-annual fluctuations.  

Implementing clause 3.10(3) and 3.10(4) – interim advice 
The word “identify” in clause 3.10(3) provides flexibility in how a BAS is estimated and the process of 
estimating BAS will need to involve elements of expert judgement. We assume that, where possible, 
a BAS should be calculated as a summary statistic from existing monitoring data over a finite time 
period. As a rule-of-thumb, a five-year period will provide a robust estimate of attribute state where 
sampling is monthly. Calculating BAS over a longer period of time may be appropriate if a council has 
a consistent monitoring record and is confident that temporal changes in attribute state are solely 
attributable to natural drivers. In practice it may be difficult to establish this, and using a BAS 
assessment period longer than five years increases the likelihood that the BAS estimate is influenced 
by anthropogenically-driven changes in state. 
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It is optional under clause 3.10(4) to account for natural variability and sampling error when 
expressing attribute states. While this means that a council could decide to express BAS as a single 
number (i.e., the NOF summary statistic only), there may be substantial uncertainty associated with 
estimates of attribute state. Because interpretations of, and comparisons between, baseline, current 
and target attribute states are influential in council freshwater management decision-making, 
scientists should acknowledge and communicate uncertainty associated with attribute state. 
Whether the uncertainty is expressed alongside a single numeric value in a regional plan or in a 
background supporting technical document is a decision for council planners to make, but this 
information should be documented and made publicly available. 

Reporting estimates of uncertainty around numeric BAS and CAS estimates is also important for 
subsequent NOF steps – in particular, clause 3.11(2) (setting the TAS “at or above” the BAS), and 
clauses 3.18 to 3.20 (monitoring and reporting progress on ‘maintain or improve’, and taking action 
where degradation in a CAS is identified). In contrast, we recommend treating the TAS as a single 
numerical value (i.e., without an an expression of uncertainty).  

As an interim approach to acknowledging that natural variability and sampling error contribute to 
uncertainty in attribute state estimates, we suggest that councils provide at least a narrative 
description of their confidence in BAS and CAS estimates . An alternative method is to identify and 
assess temporal changes in the attribute state time-series with a rolling time window. If confidence 
intervals are used to provide numeric estimates of uncertainty, the time series data used to calculate 
them need to be checked for violations of the statistical requirements noted above, and pre-
processed as necessary to remove trends and fluctuations, and checked for serial autocorrelation 
before calculating CIs.    

The time period over which to evaluate uncertainty in a BAS estimate is best left to the discretion of 
councils because we cannot recommend one time period that will be appropriate in all cases. As 
noted above, the NPS-FM only provides end dates for baseline assessment periods, not start dates. 
Many councils have long time-series for some attributes and these time-series should be assessed to 
identify trends or long-term cyclic fluctuations. Examining the long-term data at the outset of BAS 
establishment also provides an opportunity for councils to document where the estimated BAS sits 
within a trend trajectory and/or cycle. This provides important context for future evaluations of a 
CAS against the corresponding TAS and may assist with informing management intervention or re-
evaluations of the TAS. 

Given the lack of readily available methods to make statistically robust comparisons of current and 
target attribute states, we recommend that temporal trend assessments, for which standard 
procedures are already well established, are used as the primary means to indicate if a CAS is on the 
right trajectory to meet the corresponding TAS. Both temporal trend direction and magnitude (and 
the associated confidence in these estimates) are important considerations. 

Information that should be provided to decision makers to help them to interpret the results of 
attribute state and trend assessments includes: 

§ whether there has been a change in catchment land use and/or management,  

§ whether a change in attribute state or trend is also evident in another attribute that it 
may influence, or at unimpacted/reference sites within the same area/catchment, 

§ whether long-term climate cycles or extreme events may have influenced attribute 
state over the assessment period, and 
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§ whether there have been any changes in sampling and/or measurement methods that 
might have impacted the attribute assessment. 

Ultimately, expert judgement will be needed to evaluate and interpret changes in attribute state. 

Next steps 
Formal national guidance needs to be developed to support expressions of freshwater attribute state 
“in a way that accounts for natural environmental variability and sampling error”. In addition, more 
work is needed to understand, quantify and account for the influence of cyclical climate processes 
and other drivers of the natural variability associated with attribute state (and trends) through time. 
Three pieces of work that may assist councils to better account for environmental variability and 
sampling error are: 

§ investigating statistical methods to remove the effect of long-term trends and seasonal 
and interannual fluctuations in attribute time-series data to evaluate the residual 
variation about the estimated attribute state,   

§ investigating new proxy measures of climate variability that may be correlated with 
variation in attribute state, and 

§ investigating methods to characterise variation in time-series data from non-stationary 
distributions. 

This report has focussed on temporal variability at the scale of a single site but spatial variability 
forms a significant component of natural variability. National guidance is also needed to assist 
councils with accounting for and expressing spatial variability in the context of clause 3.10(4).  

Given the complexities involved with accounting for natural variability and sampling error when 
establishing and comparing attribute states, some details of attribute state assessments and 
reporting specified in the NPS-FM 2020 may need to be revisited. 
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1 Introduction 
A key step in the process of implementing the National Policy Statement for Freshwater 
Management 2020 (NPS-FM) is determining the baseline state for (at a minimum) a suite of 22 
mandatory water quality (e.g., E. coli) and biological (e.g., periphyton biomass) attributes. Clause 1.4 
- Interpretation, of the NPS-FM defines baseline attribute state as: 

“the best state out of the following:  
(a) the state of the attribute on the date it is first identified by a regional council under 

clause 3.10(1)(b) or (c) 
(b) the state of the attribute on the date on which a regional council set a freshwater 

objective for the attribute under the NPS-FM 2014 (as amended in 2017)  
(c) the state of the attribute on 7 September 2017.”1  

The above dates represent end dates for baseline assessment periods. No start dates for assessment 
periods are specified. Consequently the length of baseline assessment periods are also unspecified. 

Subclause (4) of clause 3.10 of the NPS-FM states that “attribute states and baseline states may be 
expressed in a way that accounts for natural variability and sampling error”. The inclusion of this 
clause recognises that an attribute state is estimated from a limited number of measurements 
(observations) made over a fixed time period, and is subject to variability in time and space. Various 
factors (e.g., sampling and measurement technique, flow, climate) contribute to variability in 
attribute measurements, some of which are random (stochastic) and, therefore, unpredictable. It is 
important that these sources of variation or inherent ‘noise’ are considered alongside the numeric 
attribute state when setting the future desired state (target attribute state). Policy 5 of the NPS-FM 
directs that, at a minimum, a target attribute state (TAS) cannot be set lower than the baseline 
attribute state (BAS). Further, where a BAS is worse than the national bottom line specified for an 
attribute in the NPS-FM, the corresponding TAS must be set above this. Councils must monitor and 
regularly assess current attribute state (CAS) to track progress towards meeting the corresponding 
TAS. 

Horizons Regional Council, on behalf of all regional and unitary councils (hereafter regional councils 
or councils), sought an MBIE Envirolink advice grant (HZLC166) for NIWA to convene an expert panel 
workshop on how to interpret and implement clause 3.10(4). The primary tasks of the expert panel 
were to: 

1. Define “natural variability and sampling error” in the context of NPS-FM attribute state 
assessments.  

2. Determine how numeric attribute states might be expressed in a way that accounts for 
natural variability and sampling error, including:  

o whether this is on an attribute-by-attribute and site-by-site basis or by, for example, 
some grouping of attribute and site types, and 

o the most appropriate statistical expressions to use (e.g., confidence intervals, 
standard deviation, coefficient of variation). 

It was also envisaged that workshop discussions might address what, if any, consideration should or 
can be given to the impacts of unusual/extreme hydrological conditions (e.g., droughts, floods) and 

 
1 This text incorporates minor amendments to the NPS-FM that were released in December 2022 and came into effect on 5 January 2023. 
The amendments made to clauses 1.4 and 3.10 of the NPS-FM have no material consequence to the commentary provided in this report. 
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natural climate cycles (and potentially climate change) on variability in attribute state. It was 
acknowledged in the advice grant application that the workshop discussions would be preliminary 
only and that further work would be needed to develop and refine any implementation approaches 
identified by the expert panel. 

This report provides a summary of the key material discussed by the expert panel and sets out 
preliminary commentary to support councils in implementing clause 3.10(4) of the NPS-FM.  

1.1 Approach 
The following group of experts spanning multiple science disciplines and organisations attended an 
on-line workshop on 3 November 2022: 

§ Dr Doug Booker (NIWA, Hydro-ecological Modeller) 

§ Dr David Wood (NIWA, Water Quality Scientist) 

§ Dr Paul Franklin (NIWA, Freshwater Ecologist) 

§ Juliet Milne (NIWA, Regional Management Scientist)  

§ Dr Ton Snelder (LWP, Scientist) 

§ Ned Norton (LWP, Water Resource Management Consultant) 

§ Dr Roger Young (Cawthron, Manager Freshwater Ecosystems) 

§ Dr Olivier Ausseil (Aquanet Ltd, Principal Scientist). 

Senior science staff from Horizons Regional Council (Mike Patterson, Maree Patterson and Dr Luke 
Fullard), Bay of Plenty Regional Council (James Dare), Environment Canterbury (Shirley Hayward) and 
Auckland Council (Dr Coral Grant) also attended the workshop. These council staff have been 
considering clause 3.10 implementation and some had examples of baseline attribute state 
assessments and issues to contribute to the discussion. 

Background material was pre-circulated to all workshop participants to establish a starting point for 
workshop discussions. This material was prepared by Juliet Milne, with input from Mike Patterson, 
Ton Snelder, Ned Norton and Doug Booker. The material was considered a working draft and 
included: 

§ an overview of clause 3.10 and a discussion of its likely intent, 

§ suggested definitions for natural variability, sampling error and other key terms, 

§ examples from Horizons Regional Council as to the issues with application of clause 
3.10(4),  

§ some suggested approaches Horizons Regional Council and others have considered in 
expressing the variability associated  with attribute state metrics, and 

§ a series of questions for workshop participants to consider prior to the workshop.   

For manageability, workshop discussions were focussed primarily at the scale of single sites at which 
monitoring data are collected over time, and spatial variability and modelled estimates of attribute 
state were not considered. 
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Following the workshop, Juliet Milne prepared a written summary of the workshop that was 
circulated for comment by attendees. A subgroup comprising Mike Patterson, Ned Norton and Juliet 
Milne then developed a draft strawman for communicating estimates of attribute state and 
expressing the uncertainty associated with these estimates. The draft strawman was circulated to the 
wider panel ahead of a follow-up on-line discussion on 6 December 2022. 

This report consolidates the preliminary background material, the workshop and strawman 
discussions, and some subsequent thinking. The examples provided to illustrate how different 
attribute states and associated uncertainty might be expressed will need testing by regional council 
practitioners and possible modification to ensure that they are fit for purpose.  

1.2 Terminology 
The reader is referred to the glossary for definitions of some specific terms used in this report. 

1.3 Report outline 
This report comprises three further sections. In section 2 we examine clause 3.10 of the NPS-FM in 
detail, including how it relates to different types of attribute states (BAS, CAS and TAS), and what is 
meant by “natural variability” and “sampling error”. In section 3 we provide preliminary commentary 
to support implementation of clause 3.10(3) and 3.10(4) and present examples for a possible interim 
approach to (i) estimating a BAS and characterising the associated uncertainty, (ii) setting a TAS, and 
(iii) estimating a CAS and characterising the associated uncertainty, and (iv) determining whether a 
CAS is on track to meet the corresponding TAS. We also outline some additional considerations for 
attribute state assessments. In section 4, we present some brief conclusions and recommendations 
for further work. 
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2 Clause 3.10 – intent and key terms 
The NPS-FM 2020 was introduced as part of the Government’s Essential Freshwater package. One of 
the three primary aims of this package, “stop further degradation and loss”, provides important 
context for identifying baseline attribute state under clause 3.10. This clause sits within the wider 
National Objectives Framework (NOF) process (Figure 2-1) that directs how regional councils, with 
communities and tangata whenua, are to manage freshwater in their regions. How clause 3.10 is 
implemented has implications for subsequent steps in the NOF process. In this section we examine 
clause 3.10, outline the role of the three different types of attribute state, and discuss our 
understanding of “natural variability” and “sampling error.”  

  

Figure 2-1:  Where clause 3.10 (indicated by the red circle) sits within the wider NPS-FM NOF process.   
Adapted from MfE (2022). 

2.1 What clause 3.10 says 
Clause 3.10, reproduced in Figure 2-2, has four subclauses that can be separated into two steps:  

§ identification of attributes (subclauses 1 and 2), and  

§ identification of attribute baseline state (subclauses 3 and 4).  
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Figure 2-2:  Clause 3.10 of the NPS-FM 2020, as amended in December 2022. Subclauses 3 and 4 
(highlighted) are the focus of this report. 

Under subclause (3) the baseline state of each attribute must be “identified” but there is flexibility in 
how this is done (reflected by the words ‘other criteria’ in the clause title). In accordance with clause 
1.6 (and prior to the December 2022 NPS-FM amendments, stated explicitly within 3.10(3)), councils 
must make use of “the best available information” to identify a BAS. This recognises that few or no 
measured data may be available for estimating the baseline states for some attributes.2 While MfE 
(2022) guidance directs councils to use real (measured) data where available, it also explicitly 
recognises that modelled data and other approaches will be needed. Further, clause 1.6 of the NPS-
FM gives councils discretion to interpret the best information available “in the way that will best give 
effect to” the NPS-FM. In our view, that leaves flexibility in how attribute states estimated from 
models or short time-series are both defined and communicated. 

Clause 3.10(4) clearly applies to at least BAS. The term “attribute states” in subclause (4) is not 
defined and could relate to current attribute state and/or target attribute state. Consequently, as 
written, it is optional under subclause (4) to account for natural variability and sampling error 
associated with BAS and other attribute states. We outline these different attribute states next. 

2.2 Attributes and attribute states 
Attributes are defined in the NPS-FM as measurable characteristics (e.g., nitrate-nitrogen 
concentration, periphyton biomass) used to assess the extent to which a certain freshwater value 
(e.g., ecosystem health) is provided for. The NPS-FM refers to three forms of attribute state: baseline 
attribute state (BAS), current attribute state (CAS) and target attribute state (TAS). Only BAS is 
defined in the NPS-FM. As noted in Section 1, end dates for BAS assessment periods are set out in 

 
 One panel member suggested that the statement could be interpreted in a way that means a council could justify using a long time-series 
if this was available and potentially more informative for estimating a BAS. 

3.10 Identifying attributes and their baseline states, or other criteria for assessing 
achievement of environmental outcomes  

(1) For each value that applies to an FMU or part of an FMU, the regional council:  

(a) must use all the relevant attributes identified in Appendix 2A and 2B for the compulsory 
values listed (except where specifically provided otherwise); and  

(b) may identify other attributes for any compulsory value; and  

(c) must identify, where practicable, attributes for all other applicable values; and  

(d) if attributes cannot be identified for a value, or if attributes are insufficient to assess a 
value, must identify alternative criteria to assess whether the environmental outcome of the 
value is being achieved.  

2) Any attribute identified by a regional council under subclause (1)(b) or (c) must be specific 
and, where practicable, be able to be assessed in numeric terms.  

(3) Every regional council must identify the baseline state of each attribute.  

(4) Attribute states and baseline states may be expressed in a way that accounts for natural 
variability and sampling error. 
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the NPS-FM, but start dates and lengths of assessment periods are not. Implications of variable 
assessment periods are discussed in subsection 3.2.2. 

Attribute states can be expressed numerically and as categories that represent one of four or five 
numerically defined bands (A to D or A to E). For most NOF attributes, a minimum acceptable state 
(or national bottom line) has been set. 

In the following text, we outline our understanding of the roles of baseline, current and target 
attribute states, drawing on a conceptual model provided by Horizons Regional Council. 

2.2.1 Baseline attribute state 
Depending on the attribute, a BAS serves as a ‘floor’ (Figure 2-3) under, or a ‘ceiling’ above, the 
corresponding TAS. It therefore provides a starting point or benchmark for evaluating management 
actions that may be needed to “stop further degradation.”  

         
Figure 2-3:  Horizons Regional Council's conceptual model of the different forms of attribute state under 
the NPS-FM. The model presented here applies to an attribute such as dissolved oxygen concentration where, 
as illustrated in the lefthand plot, BAS serves as a ‘floor’ and an improvement requires TAS to be set at a higher 
numeric value. The symbol and vertical line for CAS (righthand plot) illustrates that there is a degree of 
variability or uncertainty around any CAS estimate when comparing it to a proposed TAS (although not shown, 
there is also uncertainty associated with the initial BAS estimate).  

Although the NPS-FM does not specify how to “identify” a BAS, we suggest that, where sufficient 
data exist, BAS should be calculated as a median (or mean) from measurements collected over a 
fixed assessment period. We revisit this in Section 3 and provide examples of how a BAS may be 
expressed where few monitoring data are available.  

2.2.2 Target attribute state 
Target state is the desired future state that a given attribute must attain in order to achieve the 
environmental outcomes councils set for each freshwater value. As directed by clause 3.11 of the 
NPS-FM, a TAS must be time bound3 and set at or above the baseline state of that attribute (Figure 2-
3).4  It must also be set above a national bottom line (where one applies). Refer to clause 3.11 for the 
complete list of requirements for setting a TAS.  

 
3 Further, where the timeframe is long term (e.g., decades), councils must set interim TASs of not more than 10 years to assess progress 
towards achieving the (longer term) TAS. 
4 There are a few exceptions, notably E. coli and cyanobacteria (clause 3.11(3)) where the TAS must be set above the baseline state unless 
the baseline state is already in the A band. 
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Once a TAS has been set as part of an operative regional plan, the primary focus shifts from the 
starting point in terms of its corresponding BAS to measuring the current state of that attribute 
against its target state (i.e., to assess progress towards achieving the TAS, in accordance with 
subclause 3.30(2) of the NPS-FM). However, the BAS remains relevant as the initial benchmark in 
regional plan development against which the CAS could potentially be compared to assess whether 
an improvement has been made (even if the TAS has not been achieved). In addition, in some cases 
TAS will be set to maintain BAS (i.e., TAS = BAS). 

2.2.3 Current attribute state 
CAS is effectively the present (or, more correctly, recent) attribute state at any time of reporting, 
calculated in accordance with the summary statistic and assessment period specified in the NPS-FM 
(e.g., for MCI, Table 14 of the NOF specifies a median statistic based on annual sampling over 5 
years). For some attributes, the assessment period is not defined in the NPS-FM.  

Under clause 3.30(2)(b), councils are required to publish a comparison of the current state of 
attributes against the target attribute states at least every five years. However, given the 
requirement to publish monitoring data annually (clause 3.30(1)), some councils may intend to 
include comparisons of updated estimates of the CAS for each attribute against the corresponding 
TAS as part of their annual reporting. There is currently no national direction or guidance on how 
attribute state comparisons should be performed or reported. We revisit this in Section 3. 

2.3 Natural variability 
Although not defined in the NPS-FM, natural variability has been defined by MfE (2018) as follows: 

“Natural variability refers to the natural variations in many aspects of the environment that we measure. 
For example, flows and contaminant concentrations in a river vary in time, and contaminant leaching 
rates vary in space. This variation is an inherent part of the environment and cannot be reduced by 
collecting more information…”  

There are many sources of natural variability, in addition to climate processes. The definition above 
indicates that there are both temporal and spatial components to natural variability in attribute 
states. The MfE (2022) NOF guidance acknowledges that BAS can vary across a freshwater 
management unit (FMU) and recommends, as best practice, that “the baseline state should be 
determined as close as possible to the location where current or future monitoring sites will be 
located.” This statement and subsequent text recognising that different baselines states can be 
applied across an FMU suggests that temporal variability might be the intended focus of clause 
3.10(4) (especially given subsequent NOF clauses on tracking progress through time). However, there 
is nothing that excludes consideration of spatial variability.  

As noted in subsection 1.1, this report focuses on temporal variability at individual monitoring sites. 
Natural temporal variability at a site may include intra-daily variability associated with diel cycles, 
seasonal variability associated with seasonal cycles, inter-annual variability associated with 
monotonic trends and long-term cycles, and extreme variability associated with infrequent events 
such as floods or droughts (where these are not anthropogenically-driven).  

Time-series plots provided by Horizons Regional Council science staff illustrate temporal variability in 
attribute state from river sites (Figures 2-4 to 2-6), including a site that is minimally impacted by 
anthropogenic factors (Figure 2-5). This variability, in the form of fluctuating cyclical patterns, 
represents non-stationarity in attribute state due to natural variability. Climate-driven changes in 
precipitation/flow and/or temperature are likely responsible for this variability given that the 
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fluctuating curves in these (and many other time-series) plots correlate with 5-7 year cycles 
associated with the Southern Oscillation Index (SOI) (e.g., Snelder et al. 2022a, b).  

A particular challenge for councils is that a BAS must be set as the best state (as defined in the NPS-
FM) during a period that ends on one of three specific dates (refer Section 1) and, where monitoring 
data are available, is calculated over a specified time (assessment) period preceding that date. In 
situations where the BAS assessment period is shorter than the period of cyclical fluctuations in 
attribute values (often denoted by peaks and troughs, see Figure 2-5), or where attribute values are 
influenced by infrequent events (e.g., a period of intense floods), the BAS may not provide a 
representative estimate of ‘average’ state. This has important consequences for councils and 
communities given that target state must be set at or better than baseline state. For example, when 
considering the scale of improvement that is required to achieve a target state, councils need to 
consider the difference between the CAS and the TAS. If the BAS assessment period by chance was to 
fall into one of three periods commencing in 2003, 2004 or 2005 in Figure 2-4, then the TAS could be 
required to be set at or above the C, B or A band. The consequence of this could include setting 
overly lenient controls on resource use if TAS is set in the C band, or imposing stricter limits on 
resource use if TAS is set in the A band. 

 
Figure 2-4:  Visual clarity (median (closed circle) ± 90th percentile confidence intervals5) in the Manawatū 
River at Hopelands, based on monthly sampling and rolling five-year assessments. Colours denote the NPS-
FM NOF band in which calculated attribute state sits (blue = A band, green = B band, yellow = C band, orange = 
D band).  

 
Figure 2-5:  Dissolved reactive phosphorus concentrations (median (closed circle) ± 90th percentile 
confidence intervals5) for the Rangitīkei River at Pukeokahu, based on monthly sampling and rolling five-year 
assessments. This site is considered to be minimally impacted by anthropogenic factors such as land use. 
Colours denote the NPS-FM NOF band in which the calculated attribute state sits (blue = A band, green = B 
band). The open blue and grey circles indicate examples of a cyclic trough and peak, respectively. 

 
5 Note that, as discussed next in subsection 2.4, these confidence intervals do not accurately represent statistical precision, as an indicator 
of sampling error, because they conflate natural variability and sampling error. Some of the intervals are wide and span multiple attribute 
bands (especially in Figure 2-4). 

A 
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Figure 2-6:  Median E. coli counts (median (closed circle) ± 90th percentile confidence intervals5) for the 
Manawatū River at Hopelands, based on monthly sampling and rolling five-year assessments. Colours denote 
the NPS-FM NOF band in which the calculated attribute state sits (blue = A band; and orange = D band). 

The natural variability in median state illustrated in the time-series plots (especially Figure 2-5) can 
confound the detection of improvement or degradation in attribute state driven by anthropogenic 
factors (e.g., land use and management actions).6 While Snelder et al. (2022b) were able to attribute 
temporal trends in water quality variables to the combination of an indicator of climate variability 
(i.e., fluctuations in the SOI) and multiple indicators of pastoral land use, different sites showed 
different responses to the SOI (e.g., some positive and some negative correlations) and these 
responses were also variable-specific. Attribution was based on statistical models that inherently 
involve assumptions and uncertainty. 

A further complication with assessing natural variability is that not all climate variability is 
attributable to natural processes (because of anthropogenically-driven long-term climate change) 
and climate variability can also influence anthropogenic responses (e.g., an extended dry spell could 
lead to a change in land use or water abstraction and a subsequent increase in periphyton biomass). 
For this reason, the broader term of “environmental variability” might be more appropriate than 
“natural variability”.  

Extreme events that may influence attribute state are also important to consider. For example, rare, 
severe droughts and floods affect attribute measurement values, and these effects may extend for 
long periods following the event.  

It would be useful to incorporate additional proxy measures of climate variability in assessments of 
variation in attribute states. It would also be useful if a ‘normal’ year could be identified from a 
climatic point of view to contextualise assessments and reporting of attribute state. This requires 
further research. Until that is done, the SOI is simply used as a useful index of climate-related 
variability.  

Natural variability also includes variability associated with seasonal cycles. Where an attribute 
exhibits seasonality, this will also contribute to the variability in attribute state within an assessment 
period. Ignoring the influence of seasonal variation when estimating uncertainty in attribute state 
will result in an over-estimation of this uncertainty. The influence of seasonal variability is also 
important when assessing changes in attribute states between assessment periods.   

In summary, freshwater environments are dynamic and respond to multiple drivers. Statistical 
estimates of the state of freshwater attributes will, therefore, vary in time and space.  

 
6 Snelder et al. (2022b) developed models that related observed water quality trends (over different time durations) to climate variation 
(i.e., fluctuations in the SOI) and mean (and changes) of productive land use in catchments. Across 10-year windows, land use signals were 
generally swamped by the greater influence of climate variation. 



 

14 Attribute states and uncertainty 
 

2.4 Sampling error 
Sampling error is not defined in the NPS-FM, but is a well-established statistical term. The following 
definition of sampling error is taken from McBride (2016): 

“The difference between a sample statistic used to estimate a population parameter and the actual, but 
unknown, value of that parameter. Here “error” does not imply that there has been a mistake; it is a 
technical term in statistical parlance relating to accuracy.” 

In the context of the NPS-FM, the sample statistic is the NOF summary statistic (e.g., median) used to 
estimate the numeric attribute state. This statistic is an estimate of the ‘true’ attribute state because 
it is always based on a limited number of measurements made over a finite assessment period. There 
will always be uncertainty associated with estimated attribute states. Unlike environmental 
variability, this uncertainty can be reduced by gathering more data. A reduction in sample error leads 
to greater precision in the estimate of attribute state. 

Increasing sampling frequency is one way to gather more data and reduce sampling error. The 
sampling frequency requirements associated with attributes in the NOF largely align with established 
or recommended council state of the environment (SOE) monitoring. The NOF requires councils to 
measure most water quality attributes monthly over a five-year assessment period. Other attributes 
such as the MCI are estimated from annual measurements only. For a few attributes, such as 
dissolved oxygen as 1-day and 7-day mean minima concentrations, attribute state must be estimated 
from near-continuous measurements collected over a period of multiple months. 

The NPS-FM NOF attribute tables tend to specify a minimum number of measurements (samples) for 
assessing attribute state (and for some attributes, such as ammonia toxicity, no sample numbers are 
specified). This means, for example, that (where available) high frequency or event-based sampling 
could be used to better characterise the 95th percentile state. For councils that have high frequency 
water quality data available for some sites, it is possible to look at the differences in estimated 
attribute state that are based on different sampling frequencies (e.g., daily versus monthly). 
However, most councils only have monthly data and assessing these monthly data should be the 
immediate focus given the time constraints for establishing baseline attribute states. 

Uncertainty associated with sampling error is commonly quantified by attaching a measure of 
precision, such as a confidence interval (CI) to the numeric sample statistic. However, because rivers 
and lakes are non-stationary systems, statistical summaries of attribute states such as medians, 
means and standard deviations may vary over time if long-term trends are present, or if attribute 
assessment periods are shorter than the periods of cyclical fluctuations (as illustrated in Figures 2-4 
to 2-6). The use of CIs and other inferential statistics requires that the samples comprising the time 
series are independent and that the distribution is stationary (e.g., the statistical properties of the 
time series do not change over the assessment period). In the case of NOF attribute time-series, 
these requirements are likely to be violated, as indicated by long-term trends in Figures 2-4 to 2-6, 
and seasonal and interannual fluctuations. The use of CIs is revisited in subsection 3.2.1. 

In summary, sample error will always contribute to some of the uncertainty associated with 
estimates of attribute state. Collecting more data can reduce sample error and lead to greater 
precision in attribute state estimates. If inferential statistics such as CIs are used to characterise 
the precision of attribute state estimates, several requirements must be met. NOF attribute time-
series are likely to violate these requirements, as illustrated by the Horizons time-series plots. 
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2.5 Should councils implement clause 3.10(4)? 
It is optional under clause 3.10(4) to account for natural variability and sampling error (i.e., sources of 
uncertainty) when expressing attribute states. This means that a council could decide to express 
attribute states as single numbers. However, scientists and resource managers have a responsibility 
to identify and communicate uncertainty to decision makers.  

Reporting some expression of uncertainty around numeric BAS and CAS values is important in the 
context of subsequent NOF steps – in particular, clause 3.11(2) (setting a TAS “at or above” the 
baseline state), and clauses 3.18 to 3.20 (monitoring and reporting on progress to ‘maintain or 
improve’, and taking action where degradation in attribute state is identified – refer Figure 2-1). 
Expressing uncertainty is also important where a TAS has been set to “maintain” a BAS. For example, 
when attribute values fluctuate in long-period cycles (as shown in Figure 2-4), successive estimates of 
current state may give the appearance that attribute state is not being maintained, when in fact the 
CAS summary statistic (e.g., median) fluctuates over time. 

In terms of the TAS, although a few panel members thought it was appropriate to express a ‘range’ 
around the threshold, the majority of the panel considered it was easier to simply treat the TAS as a 
single numeric threshold. 

Reporting uncertainty can complicate the picture for many people, including decision makers, 
planners and the community. In our experience, confidence intervals or data ranges associated with 
numeric estimates of attribute states can also be interpreted by non-scientists as allowing for 
‘headroom’ and for further degradation to occur.7 However, failure to acknowledge uncertainty 
around numeric estimates could lead to the incorrect conclusion that there is an environmental 
problem (i.e., failure to meet TAS) or vice versa. Ultimately decision makers must decide whether to 
take a precautionary, permissive or even-handed approach to the risk of incorrect conclusions.8 In 
our view, expressing uncertainty should not be seen as a means to delay actions to address 
degradation but rather to inform decision makers. However, there is currently no simple, rigorous 
statistical method for characterising uncertainty in attribute states based on time-series data. 

We conclude that councils should express uncertainty in estimates of numeric attribute state 
provided to decision makers, but we recognise that there is no simple, rigorous statistical method 
to do so. In terms of BAS estimates, whether the uncertainty is expressed alongside the numeric 
value in a regional plan or in a background supporting technical document is a decision for council 
planners to make but this information should be documented and publicly available. 

 

  

 
7 As an example, in setting souble inorganic nutrient limits as part of their recommendations on Te Waikoropupū Springs Water 
Conservation Order, the Special Tribunal was uncomfortable recommending limits above current median estimates. See Microsoft Word - 
FINAL_Recommendation_Report_WITH_ERRATUM_20_March_2020.docx (epa.govt.nz) 
8 See McBride (2016) for a description of these three approaches. The precautionary approach assumes that a NOF ‘threshold’ has been 
breached unless the data become sufficiently convincing to indicate otherwise, the permissive approach assumes the opposite and the 
even-handed approach takes the data at ‘face value’, ignoring sampling error. 
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3 Implementing clause 3.10(3) and 3.10(4) 
Despite the statistical problems noted in Section 2, regional councils must establish and 
communicate attribute states within tight timeframes, and that necessitates the provision of some 
preliminary advice to support the process.  

We begin with commentary on the length of the assessment period(s) to adopt when calculating a 
BAS from existing monitoring data under clause 3.10(3). We then address how a BAS and CAS might 
be expressed in a way that acknowledges that these are only estimates and are influenced by 
environmental variability and sampling error (i.e., there is uncertainty associated with them). We 
follow this with examples to illustrate how councils might: 

1. Estimate a BAS and characterise the associated uncertainty. 

2. Set the TAS, taking the BAS into account. 

3. Estimate the corresponding CAS and characterise the associated uncertainty. 

4. Determine whether the CAS is on track to meet the TAS (which in the case of managing 
to “maintain”, may also be the BAS). 

We conclude this section with a brief discussion of some additional considerations when interpreting 
and reporting attribute states and uncertainty. These include the importance of considering multiple 
lines of evidence when assessing if a CAS is on track to meet the corresponding TAS. Some areas for 
further research are also briefly outlined. 

3.1 Baseline attribute state assessment periods 
The NPS-FM does not specify the time period or number of samples to use in estimating a BAS. Five 
years of measurements, where sampling is monthly, is often applied to water quality state 
assessments in freshwater state and trend reports (e.g., Whitehead et al. 2022) and provides a 
sufficient number of data points on which to calculate a statistically robust median (and, where 
applicable, 95th percentile) (e.g., McBride 2016, WHO 2003). For some attributes, the NOF also 
requires the CAS to be estimated from five years of measurements.  

We recognise that some councils may not have five years of monitoring data for some attributes. We 
suggest that no less than three years of measurements are used to calculate numeric expression of a 
BAS from monthly measurements (based on commentary in McBride 2005 and 2016). This will 
enable councils to make use of slightly shorter data records or to discard earlier data impacted by a 
known change in the environment (e.g., recent removal/reduction of a point source discharge) or 
method change (e.g., arising from adoption of NEMS methods).   

The “cyclic” fluctuations in Horizons Regional Council attribute time-series examples (Figures 2-4 to 
2-6) suggest that, for some attributes at least, the baseline assessment period (i.e., length of time) 
over which a BAS is estimated may be as important as the number of measurements. Using a long 
assessment period might be an option to capture more of the cyclic environmental variability. 
However, some councils do not have long records (e.g., newly established monitoring sites or 
attributes). Also, estimating a BAS over a long assessment period increases the risk that the estimate 
will be affected by changes in land use, sampling or measurement method and other extraneous 
factors. In other words, there are tradeoffs between using long and short assessment periods. 
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3.2 Attribute state estimates and uncertainty 
As a minimum, estimates of both baseline and current attribute states should be expressed as the 
relevant NOF summary statistics where sufficient data exist, together with their corresponding NOF 
attribute band and narrative description. Where councils have no or limited data to calculate or 
otherwise estimate baseline state, a BAS could be expressed less precisely, such as in the form of a 
measurement range .9 Where this less precise BAS estimate is communicated as a NOF band or NOF 
band range, then it should be clearly documented that it is a coarse or interim estimate based on 
best available information and has not been calculated in accordance with the NOF’s minimum 
sampling requirements. Narrative descriptions, such as those associated with the NOF bands, may 
also be useful for expressing baseline attribute states when data are limited. 

In most cases a TAS should be expressed as a single numeric threshold. However, there will be some 
situations, such as where confidence in the corresponding BAS estimate is very low or what may be 
achievable into the future is particularly uncertain, where it may be appropriate to express an 
interim TAS in the form of a NOF band, rather than a specific numeric value.  

Both BAS and CAS estimates should be expressed in a way that illustrates there is uncertainty 
associated with these estimates (associated with environmental variability and sampling error). 
While the TAS threshold does not require an associated estimate of uncertainty, where TAS is set to 
maintain BAS, it is important to recognise that future environmental variability may differ from 
current variability. This means that there will be uncertainty in deciding whether TAS has been 
achieved (owing to uncertainty in both the calculated CAS and BAS estimates). Most panel members 
agreed that councils could potentially accommodate some of this uncertainty when developing 
methods for assessing whether a TAS has been achieved (e.g., 80% of sites within an FMU might 
require 80% of their measurements to fall above the threshold).  

3.2.1 Expression of uncertainty 
We have already established that there is not a robust technical solution to quantifying uncertainty 
in BAS or CAS estimates arising from natural variability and sampling error, when the corresponding 
attribute measurements are trending upwards or downward over time, regularly fluctuating or are 
otherwise serially dependent. Until a better alternative can be found, we recommend that councils 
provide at least a narrative or qualitative description of their confidence (e.g., “low”, “moderate”, 
“high”) in BAS and CAS estimates as a way of acknowledging uncertainty. If a numeric estimate of 
uncertainty is required, a confidence interval (CI) can be used if the time-series of attribute 
measurements meets the requirements for inferential statistics.  

It is important to note that CIs are not descriptive statistics used to characterise datasets composed 
of multiple samples, such as the median, mean and variance. Rather, CIs are inferential statistics 
used to make predictions about the populations from which samples are taken. Specifically, a CI 
refers to the probability that a population parameter (e.g., a population median or 90th percentile) 
falls between a higher and lower value in a certain proportion of measurements (or observations), if 
some requirements are met. If those requirements are not met, the calculated CI is not reliable or 
accurate. The main requirements for CIs are that successive samples are independent and the 
population distribution is stationary (e.g., the statistical properties such as median and mean are 
constant over the assessment period). The independence and stationarity requirements are likely to 
be violated when using NOF attribute time-series. As noted above, these time series are often 

 
9 Where no data exist, this may be an expected or predicted range generated or extrapolated from modelling at other sites with similar 
catchment properties (e.g., geology, land use, slope) and/or expert opinion. 
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characterised by monotonic trends seasonal and interannual fluctuations, as illustrated in Figures 2-4 
to 2-6. These temporal patterns are indicative of non-stationary populations. Non-stationarity is 
almost inevitable in aquatic attribute time-series, due to the nature of environmental controls such 
as seasonal and interannual climate cycles, and progressive land-use intensification (Hirsch et al. 
2010, Snelder et al. 2022a, 2022b). For this reason, analyses of attribute time-series generally focus 
on identifying trends, seasonal cycles and other components of temporal variation rather than 
estimating the central tendency and its confidence over the entire assessment period.  

If a CI is to be used to characterise uncertainty associated with a BAS or CAS, the corresponding time-
series needs to meet the requirements listed above, or the data must be pre-processed to meet 
those requirements prior to calculating the CI. Basic pre-processing includes removing trends and 
seasonal variation, and ensuring that the detrended and deseasonalised data are not strongly serially 
correlated. Methods and software for pre-processing time-series data are widely available (e.g., 
Darken et al. 2002, Wu et al. 2007, Venables and Ripley 2013). Note that these pre-processing steps 
do not help to distinguish between human-induced versus natural trends and fluctuations.  

As an alternative for communicating variability in attribute states at monitoring sites, we recommend 
plotting rolling estimates of attribute state over the period of record. For attribute states based on 
medians, a rolling window function can be used to estimate median values for a window of several 
years duration, shifting forward through the time series in smaller time increments. Examples of this 
approach are shown in Figures 2-4 to 2-6. Methods and software for computing and plotting rolling 
statistics are widely available (e.g., Nielsen 2019, Dama and Sinoquet 2023). This graphical approach 
can provide information about variation in attribute state over time, provided the time period is long 
enough to yield multiple windows.  

We illustrate a mix of the options above in the examples that follow in subsection 3.4. 

Appendix A sets out how to calculate CIs and Appendix B sets out tolerance intervals (TI) as a possible 
alternative statistical expression of precision. Both appendices are based on material provided by 
Horizons Regional Council science staff. Council staff should be explicit in their documentation that a 
CI provides an incomplete description of uncertainty in an attribute state because it only represents a 
portion of the true long-term environmental variability associated with attribute state. 

3.2.2 Uncertainty assessment period 
The time period over which to evaluate uncertainty in a BAS estimate is best left to the discretion of 
councils because we cannot recommend one time period that will be appropriate in all cases. As 
noted above, the NPS-FM only provides end dates for baseline assessment periods, not start dates. 
Some councils have long time-series for some attributes and these time-series should be assessed to 
identify trends or long-term cyclic fluctuations. Examining the long-term data at the outset of BAS 
establishment also provides an opportunity for councils to document where the estimated BAS sits 
within a trend trajectory and/or cycle. This provides important context for future evaluations of a 
CAS against the corresponding TAS and may assist with informing management intervention or re-
evaluations of the TAS. It is important to note that, for non-stationary time-series, the BAS cannot be 
extrapolated to periods prior to or after the assessment period).  

For some NOF attributes, the NPS-FM specifies the time period for assessing current attribute states; 
where it does not, we recommend an assessment period of five years (for the reasons outlined in 
subsection 3.1). However, as illustrated in the workflows in subsection 3.4, at times it will be 
necessary to examine the entire time-series record to provide context for where the CAS summary 
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statistic and its associated uncertainty estimate lie within any longer-term climate-related trend 
and/or cycle of variation.  

3.3 Reporting attribute state information to communities 
In our experience with NPS-FM implementation to date, it is easier for the public to understand and 
digest attribute state information when it is presented in the form of categorical NOF bands and 
narrative descriptions rather than tables of numbers, at least in the first instance. This is particularly 
the case when the information spans a large number of monitoring sites and attributes. Information 
on uncertainty in attribute state arising from environmental variability and sampling error could be 
provided in the form of NOF band ranges (e.g., Band A(A-B), indicating a median of Band A with the 
range spanning Bands A to B), or a narrative description of confidence in the estimate of attribute 
state (“very likely”, “highly likely”, etc.).10 

To assist with reporting progress in TAS attainment to the community, councils could explore the use 
of coloured ‘traffic light’ type flags (as illustrated in Figures 3-1 and 3-2 in the next subsection) in the 
first instance to indicate whether a CAS appears to be on track to meet the corresponding TAS. The 
CAS estimate for every NOF attribute could be presented using a square divided into green, yellow, 
orange and red quadrants annotated with the percentage of attributes that fall into each. This could 
be used to indicate problem areas that are worthy of closer attention with more detailed summary 
statistic information provided. 

Although numeric attribute state and uncertainty estimates would not be a primary focus of 
summary-level attribute state reporting for communities, this information should be documented for 
decision makers and publicly available for those wishing to understand the state of rivers and lakes at 
a more detailed and technical level. 

3.4 Examples 
In this subsection, we set out some worked examples of the suggested approaches described above 
for estimating baseline and current attribute states, characterising uncertainty, and setting target 
attribute states. These suggestions are a starting point for further discussion and testing by regional 
council practitioners and may need modification to ensure that they are fit for purpose.  

For simplicity, the worked examples are based on single attributes at single sites, using consistent 
sampling and measurement methods. In reality, a council may use data from multiple sites in an FMU 
to establish a BAS, TAS or CAS, and sampling and/or measurement methods may change over time. 
Some brief commentary on these matters is provided in subsection 3.5. 

In the examples that follow, summary statistic refers to the NOF attribute statistic (e.g., median) that 
is calculated or otherwise estimated from available data. Where a CI is referred to, it is assumed that 
the requirements for using CIs have been met (refer subsection 3.2.1). 

3.4.1 Expressing a baseline attribute state and associated uncertainty 
Two approaches are outlined below addressing situations where sufficient data to calculate a BAS 
summary statistic do and do not exist. As per subsection 3.1, sufficient data here generally means a 

 
10 The narrative descriptions used could still reflect a statistical probability-based estimate of uncertainty (e.g., in the way confidence about 
the direction of a trend is currently calculated in temporal trend assessments – see Table 3-1 in subsection 3.4.3). Detailed guidance on 
communicating uncertainty associated with NPS-FM implementation is provided by MfE (2018). 
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minimum of 3-5 years of data for attributes measured monthly11 and 4-5 years of data for attributes 
measured annually, if data requirements are not specified in the NPS-FM 2020. 

Situation 1: Where sufficient data exist 
Approach: Calculate a BAS as a numeric summary statistic and report that value along with the NOF 
band in which it sits (and accompanying narrative). Also include a numerical and NOF band 
expression of precision (noting that the measurement range could replace a precision estimate 
where measurements are made annually).  

Where a longer-term record exists (e.g., 10+ years), plot attribute state as a rolling 3 to 5 year 
statistic (as per the Horizons time-series examples in Figures 2-4 to 2-6) to identify long-term trends 
or cyclic fluctuations. 

Example 1: Total nitrogen (TN) in a polymictic lake  
The lake has been sampled monthly for five years prior to the BAS establishment date adopted from 
the NPS-FM. The median is calculated as 480 mg/m3 (B band) and the 90% CI is ± 30 mg/m3, which 
means the CI spans both B and C bands (as 500 is the B/C boundary). Therefore, for reporting 
purposes: TN BAS = 480 ± 30 mg/m3 as a numeric; and B(B-C) as a NOF band and band range. 
 
Example 2: Macroinvertebrate community index (MCI) 
A five-year time-series exists of MCI scores determined from annual sampling of macroinvertebrates 
at a river site. The median MCI score derived from the five samples is 116 with the individual numeric 
scores ranging from 102 to 120 (i.e., from NOF Band B to Band C). Therefore, the BAS might be 
reported as follows: MCI BAS = 116 (102-120) as a numeric; and Band B(B-C) as a NOF band and band 
range. 

Situation 2: Where data are insufficient  

This situation applies when Situation 1 does not (i.e., where n is <30 for attributes measured monthly 
(or n <4-5 for attributes measured annually) over the last 5 years.  

Approach: Whether or not to calculate BAS as a summary statistic and/or express BAS as a NOF band 
and/or NOF band range(s) is a decision left to the discretion of councils. As part of making this 
decision, a council should consider how well the available data or other information can be 
translated to an indicative summary statistic, NOF band and NOF band range recognising that these 
are based on summary statistics (i.e., the number of available measurements is important). In some 
cases, a council may decide only to note the number of measurements available and their range. 
Where a council elects to present NOF summary statistics and/or bands, these will need to be 
accompanied with a note that they are indicative only (i.e., estimated from limited data).   

Example 1: Chlorophyll a (Chl-a) in a default class river (as defined by the NPS-FM)  
The river site has been sampled monthly for one year and on a handful of occasions in summer in 
two other years prior to the BAS establishment date adopted from the NPS-FM. The 92nd percentile 
NOF summary statistic and majority of individual sample results fall in Band B, with a range from 40 
mg/m2 (Band A) to 160 mg/L (Band C). Therefore the Chl-a BAS might be reported as: Chl-a BAS* = 
Band B(A-C) using the NOF bands (or 40-160 mg/m2 if the numeric range of measurements is used), 
where the asterisk denotes the BAS has been estimated from limited data. 
 

 
11 Monthly sampling equates to 36 samples over three years but it is common for one or sometimes two sampling events to be missed in a 
year (e.g., storms or lambing that may limit access to monitoring sites). A minimum of 30 samples is consistent with the recommendations 
of McBride (2005) for calculation of 95th percentile metrics. 
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Example 2: Macroinvertebrate community index (MCI) 
Three MCI scores (95, 104 and 121) are available from annual sampling of macroinvertebrates at a 
river site. The median of the three sample results is 104 (Band C) and the individual numeric scores 
span Band B and Band C. The MCI BAS estimate might therefore be reported as MCI BAS* = 104 (if 
using the median), 95-121 (if using the measurement range), or Band C(B-C) (if using NOF bands), 
where the asterisk denotes the BAS has been estimated from limited data. 

3.4.2 Setting target attribute states  
Two types of situations exist here depending on whether a decision is made to maintain or improve 
on the BAS.  

Situation 1: Where a decision is made to set a TAS to “maintain” (i.e., TAS = BAS) 
This situation can be divided into two types where the point of difference is whether or not sufficient 
data were available to calculate a BAS as a NOF summary statistic versus estimating a BAS only as a 
NOF band. In either case, where TAS is set to maintain the BAS, this means by definition “no 
deterioriation” from basline state and the focus can shift to evaluating trends in CAS over time 
(subsection 3.4.3). 

Situation 1A: Where a BAS was calculated as a numeric summary statistic 

Approach: Set the TAS as a numeric threshold equal to the BAS summary statistic and report that 
with the NOF band in which it sits (and accompanying narrative description).  

Example: TN in a polymictic lake 
Using the earlier example presented in subsection 3.4.1, the TN BAS was 480 ± 30 mg/m3 or B(B-C) 
expressed as a NOF band and band range. Setting the TAS to maintain the BAS may be expressed as 
480 (B). 

Situation 1B: Where a BAS was estimated as a NOF band 

Approach: Set the TAS at the same NOF band as the BAS estimate. Depending on the attribute and 
potential variability anticipated in measurements, the TAS might be best established as an interim 
target. It may also be useful for planners to consider including an explanation in the regional plan 
that the policy intent in this situation is to at least maintain baseline state (which may be better 
estimated in future) and not to allow deterioration within a NOF band due to resource use.   

Example: Chl-a in a default class river 
Using the earlier example presented in subsection 3.4.1, the chl-a BAS was estimated to be in NOF 
Band B. Therefore setting a TAS to maintain the BAS might be described as B (40-160 mg/m2) (if the 
council elects to report the numeric measurement range for the BAS estimate with the indicative 
NOF band).  

Situation 2: Where a decision is made to set a TAS to “improve” relative to the BAS 
There are several options to set  a TAS as an improvement in attribute state relative to the 
corresponding BAS. For example, an improvement could be sought in the median attribute state 
and/or in the form of fewer measurements at the poor end of the range of measurements. The 
concept of seeking an improvement in a proportion of measurements is reflected in Appendix 3 of 
the NPS-FM (national target for primary contact recreation). 
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Situation 2A: Where a BAS was calculated as a numeric summary statistic 

Approach: Set the TAS as a numeric threshold lower (or higher in the case of an attribute such as 
dissolved oxygen concentration) than that of the BAS NOF summary statistic and report this 
alongside the NOF band in which the TAS sits (and accompanying narrative description).  

Example: TN in a polymictic lake 
Once again using example 1 in subsection 3.4.1, TN has a BAS (as a median) of 480 ± 30 mg/m3 or B(B-
C) expressed as a NOF band and band range. If the aim is to improve: 

§ within the B band (which spans from 300-500 mg/m3) from the current near bottom of 
Band B to nearer to the top of Band B (say 350 mg/m3) then the TAS might be 
expressed as a median of 350 mg/m3 (B). 

§ from the current B band to the A band, then the TAS might be expressed as a median 
of <300 mg/m3 (A). 

Situation 2B: Where a BAS was estimated as a NOF band 

Approach: Set the TAS so that it is at a higher NOF band or improved measurement or NOF band 
range than the BAS estimate. Express this TAS as a band(s) together with its upper and lower numeric 
boundaries (and accompanying narrative description).  

Example: Revisiting example 2 of Situation 2 from subsection 3.4.1, Chl-a in a default class river has a 
measurement range (as a 92nd percentile) of 40-160 mg/m2, and spans Band B(A-C) (0-200 mg/m2) 
based on the NOF bands and their numerical range. If the aim is to improve Chl-a to: 

§ reduce the upper end of the measurement range by 50%, then the TAS might be 
expressed as a 92nd percentile of B and <80 mg/m3, or 

§ sit consistently within the B band (which spans from 51-120 mg/m3), then the TAS 
might be expressed as a 92nd percentile of B (51-120 mg/m3), or 

§ at least the B band, then the TAS might be expressed as a 92nd percentile of A-B (<120 
mg/m3). 

3.4.3 Estimating a CAS (and an expression of associated uncertainty) and assessing 
progress towards the corresponding TAS 

At the point in the NOF process where a CAS is being calculated, the requirements of clause 3.18 
(monitoring progress towards achieving TAS and environmental outcomes) and clause 3.19 (assessing 
trends in attribute states and investigating any deteriorating trend that is “more likely than not”) of 
the NPS-FM come into play. The workflows below therefore combine both an assessment of CAS and 
temporal trends.12 For assessment and interpretation of temporal trends, we recommend councils 
follow the guidance of Snelder et al. (2021).  

In the example workflows summarised in Figures 3-1 and 3-2, a deteriorating trend is defined as one 
in which a deterioration is at least “likely”, equating to a probability between 0.67 and 1 (Table 3-1).  
Traffic-light style colour coding can be used to support visual interpretation of the trend results. Again, 
two types of situation exist here based on whether a TAS was set with the aim of maintaining or 
improving on its corresponding BAS.   

 
12 Clause 3.20 (responding to degradation) is also important here as it is inextricably linked to clause 3.19. When applying clause 3.20, 
councils should use information on trend direction and magnitude – and the associated confidence in these estimates – to decide whether to 
act and, if so, how strongly to act (other factors, such as the potential consequences of not acting are also relevant). 
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   OUTCOME 1       OUTCOME 2               OUTCOME 3            OUTCOME 4 

The CAS summary statistic (i.e., 
numeric NOF summary statistic) is 
better than or equal to the TAS 
numeric threshold and no 
deteriorating temporal trend is 
identified 
 

 
 
Council is currently meeting the 
TAS; continue with routine 
monitoring and reporting. 

The CAS summary statistic is better 
than or equal to the TAS numeric 
threshold but a deteriorating 
temporal trend is identified* 
 
 
 

 
 
A potential issue may exist; check 
confidence in trend direction and the 
magnitude of trend. Where long-
term time-series data are available, 
check where the CAS estimate sits 
within any longer-term climate-
related trend and/or cycle of 
variation and document and 
communicate this. Continue to 
maintain a watching brief via routine 
monitoring and reporting. 
 
 

 

*A different outcome that might also 
attract a yellow flag is when the CAS 
summary statistic is lower (poorer) than 
the TAS numeric threshold but falls within 
the same NOF band (regardless of the 
temporal trend assessment results). 
 

 

The CAS summary statistic sits within a 
lower (poorer) NOF band than the TAS 
numeric threshold but an improving 
temporal trend is identified 
 
 
 
 

 
 
The CAS is not meeting the TAS but the 
trend direction is improving; check 
confidence in both trend direction and 
magnitude to determine the extent of 
investigations necessary. Evaluate other 
lines of evidence such as changes in 
catchment land use/management, 
climate cycle/hydrological events, 
degradation in related attributes, etc.). 
Additional monitoring may also be 
necessary. 

The CAS summary statistic sits in a 
lower (poorer) NOF band than the TAS 
numeric threshold and there is no 
evidence of an improving trend of 
sufficient magnitude to meet the TAS 
by the target date 
 

 
The CAS is not meeting the TAS and the 
associated temporal trend is identified 
as (a) deteriorating, (b) as likely to be 
deteriorating as improving, or (c) 
improving at an insufficient magnitude. 
Evaluate both the confidence in any 
deteriorating trend and the magnitude 
of the deterioration to inform council 
decisions around regulatory and non-
regulatory interventions (incl. additional 
monitoring). Include a detailed 
investigation that considers multiple 
lines of evidence (e.g., changes in 
catchment land use/management, 
climate cycle/hydrological events, 
degradation in related attributes or 
sites) and comment on the potential 
consequences of the observed 
degradation for the freshwater 
environment in question. 

 Figure 3-1:  Example outcomes for assessments of a CAS against its corresponding TAS where the TAS was set with the aim of maintaining the BAS. For clarity, the TAS 
numeric threshold refers to the summary statistic numeric calculated for its corresponding BAS in subsection 3.4.1; either a specified numeric target if that has been formally 
identified, or the bottom of the NOF band that has been identified as the target band if a numeric has not been identified.  
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   OUTCOME 1    OUTCOME 2         OUTCOME 3      OUTCOME 4 

The CAS summary statistic 
statistic (i.e., numeric NOF 
summary statistic) is better than 
the TAS numeric threshold and no 
deteriorating temporal trend is 
identified 
 

 
 

Council is currently meeting the 
TAS; continue with routine 
monitoring and reporting. 

 

 

The CAS summary statistic is better 
than the TAS numeric threshold but 
a deteriorating temporal trend is 
identified* 
 
 
 

 
 

A potential issue may exist; check 
confidence in trend direction and the 
magnitude of trend. Where long-
term time-series data are available, 
check where the CAS sits within any 
longer-term climate-related trend 
and/or cycle of variation and 
document and communicate this. 
Continue to maintain a watching 
brief via routine monitoring and 
reporting. 
 
 
 
*A different outcome that might also 
attract a yellow flag is when the CAS 
summary statistic is lower (poorer) than 
the TAS numeric threshold but falls within 
the same NOF band (regardless of the 
temporal trend assessment results). 
 

The CAS summary statistic sits within a 
lower (poorer) NOF band than the TAS 
numeric threshold but an improving 
temporal trend is identified 
 
 
 

 
 
The CAS is not meeting TAS but the trend 
direction is improving; check confidence 
in both trend direction and magnitude to 
determine extent of investigations 
necessary. Evaluate other lines of 
evidence such as changes in catchment 
land use/management, climate 
cycle/hydrological events, degradation in 
related attributes, etc.). Additional 
monitoring may also be necessary. 

The CAS summary statistic sits in a 
lower (poorer) NOF band than the TAS 
numeric threshold and there is no 
evidence of an improving trend of 
sufficient magnitude to meet the TAS 
by the target date 
 

 

The CAS is not meeting the TAS and the 
associated temporal trend is identified 
as (a) deteriorating, (b) as likely to be 
deteriorating as improving, or (c) 
improving at an insufficient magnitude. 
Evaluate both the confidence in any 
deteriorating trend and the magnitude 
of the deterioration to inform council 
decisions around regulatory and non-
regulatory interventions (incl. additional 
monitoring). Include a detailed 
investigation that considers multiple 
lines of evidence (e.g., changes in 
catchment land use/management, 
climate cycle/hydrological events, 
degradation in related attributes or 
sites) and commentary on the potential 
consequences of the observed 
degradation for the freshwater 
environment in question. 

 Figure 3-2:  Example outcomes for assessments of a CAS against its corresponding TAS where the TAS was set with the aim of improving the BAS. For clarity, the TAS 
numeric threshold refers to the summary statistic numeric calculated for its corresponding BAS in subsection 3.4.1; either a specified numeric target if that has been formally 
identified, or the bottom of the band that has been identified as the target band if a numeric has not been identified. 
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Table 3-1: Confidence categories for conveying the likelihood (probability) of a deteriorating trend in a 
freshwater attribute. The confidence categories presented here are a simplified version of those used by the 
Intergovernmental Panel on Climate Change (IPCC; Stocker et al. 2014). See Snelder et al. (2021) for more 
commentary. 

Probability (%) Level of confidence in trend and its direction 

0–10 Highly unlikely 

10–33 Unlikely 

33–67 As likely as not to have increased or decreased 

67–90 Likely 

90–100 Highly likely 

 
For simplicity, the workflows assume that there are sufficient measurements (or other information 
such as modelled estimates) upon which to calculate the CAS as a numeric NOF summary statistic 
(e.g., median) with an associated estimate of precision (e.g., 90th percentile CI, calculated over the 
CAS assessment period). Both the CAS summary statistic and estimate of precision should be 
included in council reporting, with the latter included only for the purpose of indicating the amount 
of variability (uncertainty) in the CAS estimate.  

In the workflows, the results of a temporal trend assessment should be used to identify if CAS is on 
track to meet TAS. This is discussed further in subsection 3.5. 

Situation 1: Where a TAS was set with the aim of maintaining the BAS 
Approach: Calculate the CAS summary statistic according to the NOF attribute table requirements (if 
not specified, apply the “sufficient data” requirements as per subsection 3.1) and carry out a 
temporal trend assessment. Follow the advice in the relevant assessment outcome box of Figure 3-1. 
Note that Figure 3-1 is intended to provide generic guidance only; other outcomes may be possible. 

Situation 2: Where a TAS was set with the aim of improving on the BAS 
Approach: Calculate as per Situation 1 but follow the advice in the relevant assessment outcome box 
of Figure 3-2. 

3.5 Discussion 
Implementation of clause 3.10(3)-(4) of the NPS-FM is not straightforward and this has flow-on 
effects for attribute state assessments and reporting under clause 3.30(2) that may not have been 
anticipated when the NPS-FM 2020 was prepared. 

Including a statistical estimate of precision with estimates of BAS and CAS provides a way to indicate 
a component of uncertainty in these attribute states. However, this estimate is not robust when 
attribute measurements come from non-stationary populations, or fluctuate seasonally, or if there is 
auto-correlation in the measurement time-series. Further, this leaves unquantified components of 
uncertainty (such as that arising from environmental variability beyond a given assessment period) 
that will confound comparisons between different attribute states. For example, recent work by 
Snelder and Kerr (2022) for Auckland Council on the influence of flow on water quality in rivers has 
demonstrated that assessments of attribute state (based on five years of monthly measurements) 
were influenced by differences in the flow regime between assessment periods (which were in turn 
likely due to climate variability that may have been natural or associated with anthropogenic climate 
change, or both). This work exemplifies the difficulty in determining whether changes in attribute 
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state between assessment periods are due to manageable human activities or unmanageable natural 
processes.  

Given that it is not currently possible to make rigorous statistical comparisons of attribute state 
between different assessment periods, we recommend that temporal trend assessments are used as 
the primary means to indicate whether a CAS is on track to meet its corresponding TAS. We 
recognise that temporal trend assessments also involve assumptions and, therefore, there is 
uncertainty associated with trend direction and magnitude estimates. In addition, statistical trends 
cannot be extrapolated beyond the end date of an attribute state assessment period, which 
precludes inferences about ‘over-shooting’ or ‘under-shooting’ the TAS in the future. However, 
standard trend assessment procedures are already well established (see Snelder et al. 2021) and 
there are techniques available to potentially account for variability associated with seasonal cycles 
and flow fluctuations (e.g., Weighted Regressions on Time, Discharge and Season (WRTDS)).13  

The workflows in Figures 3-1 and 3-2 illustrate how trend assessments could be used by councils to 
decide whether further assessments or actions are needed. If the trend directions indicate anything 
other than green flags, then more information should be evaluated, including: 

§ the entire time-series record to see whether the numeric CAS estimate and its 
associated expression of uncertainty lie within the longer-term climate-related trend 
and/or cycle of variation,  

§ the statistical confidence associated with the temporal trend estimate, and 

§ temporal trend magnitude (and the associated confidence in this estimate). 

Contextual details that should be provided to decision makers tasked with determining if 
management actions are needed to meet a TAS should include: 

§ whether there has been a change in catchment land use and/or management (which 
will require monitoring of the implementation of relevant regional plan provisions and 
non-regulatory initiatives),  

§ whether a change in attribute state or trend is also evident in a related attribute (e.g., 
if a deteriorating state or trend is observed in nitrate toxicity, is there an associated 
deterioration in the macroinvertebrate attribute state summary statistics that may 
suggest an adverse impact on ecosystem health?) or at unimpacted/reference sites 
within the same area/catchment (if so, then management intervention may not be 
required),  

§ whether long-term climate cycles or specific hydrological (or other) events may have 
influenced attribute state over an assessment period (e.g., present CAS as a time-series 
graph along the lines of Figure 2-4 so that where CAS sits within the range of longer-
term cyclic variability can be seen), and 

§ whether any changes in sampling and/or measurement methods might have impacted 
the attribute assessment (see subsection 3.5.3). 

 
13 Note however that the WRTDS method does not necessarily remove the influence of climate on attribute time-series records.   
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3.5.1 Attribute states from multiple sites (spatial variability) 
Although spatial variability was not considered in this report, we recognise that a council may use 
data from multiple sites in a FMU to establish attribute states. This approach ensures that estimates 
of attribute state capture some spatial variability that will likely exist across a FMU. In terms of 
expressing an attribute state across multiple sites, we recommend that the numeric NOF summary 
statistic or NOF band and some associated estimate of uncertainty are also documented for each 
individual site. The council will then need to derive a way to assign an overall classification of 
attribute state from those individual numerics. One way this could be done is to report the median 
and ranges (where available) and associated NOF band and numeric band range across the sites. 

Example: Chlorophyll a (Chl-a) in a default class river  
Data are available for five river sites within an FMU and a council wishes to establish the BAS. The 
individual 92% percentile values from monthly sampling for the previous three years are: 

§ River/site 1: 40 mg/m2 (Band A)  

§ River/site 2: 100 mg/m2 (Band B)  

§ River/site 3: 85 mg/m2 (Band B)  

§ River/site 4: 180 mg/m2 (Band C)  

§ River/site 5: 110 mg/m2 (Band B)  

The median value is 100 mg/m2, so the BAS estimate might be expressed as: Chl-a BAS = Band B(A-C) 
(100; 40-180 mg/m2).  

If a TAS was set to maintain baseline state (Situation 1 described in subsection 3.4.2), then the 
procedure used in the example shown above could also be used to set a TAS for an FMU. Several 
panel members suggested that uncertainty about the achievement of a TAS could be addressed by 
establishing at the outset the percentage of monitoring sites – or potentially monitoring years – that 
need to meet the TAS threshold for the FMU-wide TAS to be deemed to have been met (in the 
example above, say 80% (4 out of 5) sites must have a 92% percentile biomass of <100 mg/m2 or 
possibly that the 92% percentile just falls in Band B). Another potential expression of TAS that might 
warrant further investigation is as a percentage improvement that is required to be achieved at a site 
or across multiple sites (e.g., the median concentration at site X, or the median concentration at 80% 
(8 out of 10) sites, must decrease by at least 20%). This approach might assist with the application of 
on-farm mitigations and catchment water quality models, for which relative changes may be more 
appropriate than absolute values. 

3.5.2 Changes in sampling and/or measurement methods 
Sampling and/or measurement methods (including method detection limits) inevitably change over 
time, such as through adoption of NEMS protocols or improved tools/technologies. The effect of 
method changes on attribute measurements will need to be evaluated (e.g., through paired 
measurement campaigns or literature reviews) and the historic measurements adjusted where 
possible. If this is not possible, changes in methods should be documented to flag that the changes 
may influence an attribute time-series.  
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We recommend documenting measurement methods at the time of estimating baseline attribute 
state and noting pending method changes.14 Similarly, each time a CAS is reassessed and a trend 
assessment performed, it will be necessary to consider and document any changes in sampling 
and/or measurement methods.  

3.5.3 River flows 
Assessments of attribute state at river monitoring sites are influenced by both the instantaneous 
flow rate at the time of water sampling and the longer-term flow regime prior to sampling (Snelder 
and Kerr 2022). Sampling, therefore, needs to be unbiased with respect to instantaneous flow to 
ensure that attribute measurements represent the true attribute state. Continuous flow monitoring 
or modelling is recommended so that the flow regime variation can be characterised and used as 
contextual information alongside reporting of attribute state and trends. 

3.5.4 Climate 
As discussed earlier in this report, climate variability can affect estimates of attribute state and 
trends and may cause or contribute to failures to achieve a TAS. It would, therefore, be useful to 
investigate methods for removing the cyclical fluctuations in attribute time-series associated with 
climate variability, and for evaluating the residual variation about the median attribute state. 

Most of the work to date on quantifying the effects of cyclical climate processes on trends in 
freshwater attributes has used SOI as the sole climate indicator variable (Scarsbrook et al. 2003, 
Snelder et al. 2022a, b). It would, therefore, be useful to identify other proxy measures of climate 
that may be able to explain more of the variation observed in attribute states. 

  

 
14 For example, some councils were up until recently calculating total nitrogen (TN) from the sum of Total Kjeldahl Nitrogen (TKN) and 
dissolved inorganic nitrogen (DIN) but have now adopted the NEMS recommended direct persulphate TN method. Extensive paired testing 
has established that the TKN test, owing to a stronger acid digestion, returns higher TN concentrations from sediment-laden water samples 
than the direct persulphate TN method (e.g., Davies-Colley and McBride 2016) – this difference has been sufficient to result in (artificial) 
shifts in TLI scores in some lakes. 
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4 Conclusions and recommendations 
This report has highlighted that a robust technical solution to implementing clause 3.10(3)-(4) of the 
NPS-FM does not currently exist. Clause 3(10)(4) usefully recognises that both natural variability and 
sampling error are sources of uncertainty in the estimation of baseline and current attribute states. 
However, in practice, it is very difficult to distinguish sampling error from natural variability and we 
do not have the ability to robustly quantify these sources of uncertainty when making assessments of 
baseline and current attribute states. One particularly challenging issue is how to account for long-
term cyclical fluctuations in river and lake attribute states that are generally not captured in 
estimates of uncertainty based on relatively short assessment periods. Another challenging issue is 
how to account for the influence of seasonality on uncertainty in attribute states during assessment 
periods.  

Councils need to estimate BAS and CAS and set TAS within tight timeframes, and we have provided 
some preliminary commentary and suggestions to support councils with these tasks. This includes 
consideration of the assessment period for establishing a BAS and possible approaches to 
characterise uncertainty in estimates of baseline and current attribute states. Councils could report 
attribute states without estimates of precision or variability, but we do not recommend this 
approach because it conveys no information about the uncertainty associated with attribute state 
estimation. Instead, we suggest that BAS and CAS estimates are reported with some estimation or 
description of uncertainty. The use of CIs to meet this need was discussed by the expert panel. The 
use of CIs requires that the samples comprising an attribute time-series are independent and come 
from a stationary  distribution. In the case of NOF attribute time-series, these requirements are likely 
to be violated, as indicated by long-term trends and seasonal and interannual fluctuations. Under 
these conditions, time series data must be pre-processed to remove trends and fluctuations, and 
checked for serial autocorrelation before calculating CIs.  

As an alternative, councils can assess temporal variability in the attribute state over the assessment 
period using a rolling time window (e.g., a rolling median). At the very least, councils should provide 
a narrative description of their confidence in the estimate of attribute state based on expert 
judgement.  

Given the lack of readily available methods to make statistically robust comparisons of current and 
target attribute states, we recommend that temporal trend assessments, for which standard 
procedures are already well established, are used as the primary means to indicate if a CAS is on 
track to meet its corresponding TAS.   

Decision makers will need a range of information to contextualise and interpret the results of 
attribute state and trend assessments. This includes evaluations of changes in catchment land 
use/management, changes in related attributes or reference sites, and the effects of climate 
cycle/hydrological events during the assessment period. This contextual information will be 
particularly important for decision makers tasked with determining whether management actions 
are needed to meet a TAS and the broader environmental outcomes established under the NPS-FM. 

Methods and accompanying detailed national guidance need to be developed to support robust 
comparisons of attribute state between assessment periods, including accounting for natural 
variability and sampling error. Specific work is needed to better understand, quantify and account for 
the influence of seasonality, cyclical climate processes, and other drivers of the natural variability 
associated with attribute state (and trends) through time. For example, we recommend: 
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§ statistical methods to remove the effect of long-term trends and seasonal and 
interannual fluctuations in attribute time-series data to evaluate the residual variation 
about the estimated attribute state,  

§ investigating new proxy measures of climate variability that may be correlated with 
variation in attribute state, and 

§ investigating methods to characterise variation in time-series data from non-stationary 
distributions. 

This report focussed on temporal variability at the scale of a single site. Spatial variability forms a 
significant component of natural variability and national guidance is also needed on how to account 
for this component in the context of clause 3.10(4). Overall, given the complexities involved with 
accounting for natural variability and sampling error when establishing and comparing between 
different attribute states, it may be necessary to revisit some details of attribute state assessments 
and reporting specified in the NPS-FM 2020. 
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6 Glossary 

Accuracy 
Closeness of agreement between measurements of an attribute (using 
NPS-FM language) and the attribute’s true (unknown) value. Accuracy 
includes a combination of both precision and bias.  

Assessment period  
The time period used to calculate an attribute state metric (e.g., 5 
years). 

Bias 
Consistent or systematic over- or under-reporting in the measurement 
of an attribute (e.g., due to a field or laboratory sensor that consistently 
over-reports a measurement). 

Confidence interval 
A statistical interval within which, with some designated confidence 
level (e.g., 90 or 95%), a measurement will lie most of the time, under 
repetitive sampling. 

Coefficient of variation 
A measure of variability, expressed as a percentage, derived by dividing 
the standard deviation of a dataset by the mean value. 

Measurement 
An individual sample (in NPS-FM language) or observation (in statistical 
language).  

Non stationary 
A time-series whose statistical properties such as mean and standard 
deviation do not remain consistent over time. 

Numeric attribute 
state 

The face value of the relevant summary statistic for a NOF attribute 
(e.g., a median total nitrogen concentration of 2.1 mg/L), calculated 
from a set of measurements over a specific assessment period. 

Precision How close repeated independent measurements are to each other. 

Residual 
A statistical term meaning the difference between an observed value 
and the corresponding value of the same attribute when predicted by a 
function. 

Sampling error 
The difference between a sample statistic used to estimate a population 
parameter and the actual but unknown value of the parameter (see 
subsection 2.4).  

Sampling frequency 
The frequency at which a population is sampled. In the NPS-FM, some 
attributes must be sampled (measured) at a specific time interval (e.g., 
monthly or annually). 

Tolerance interval 
A statistical interval within which, with some designated confidence 
level (e.g., 90 or 95%), a specified proportion of a sampled population 
falls. 

Uncertainty of 
measurement (UoM) 

An estimate of the variability inherent in a measurement based on 
instrument / equipment calibrations, purity of chemicals used for 
making calibration standards, and human factors. 
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Appendix A Confidence interval calculations 
The Wilson score method (Wilson 1927) for calculating the confidence interval of a percentile is 
described below, reproduced from Fullard et al. (2022). This method treats each water quality 
sample as a Bernoulli trial, that is, each sample is less than or equal to the desired population 
percentile (such as the median) or not. Assessing the data in such a way means that the results of our 
Bernoulli trial are binomially distributed, regardless of the underlying distribution of the data itself.  
Therefore, the generation of uncertainty intervals for percentiles is achieved using well-studied 
methods for binomial uncertainty intervals (Goudey 2007, Helsel and Hirsch 1992). 
 
In essence: 

§ Given a desired percentile estimate, 𝑝  (where 0	 ≤ 𝑝	 ≤ 1 ), and confidence level, 
(1 − 𝛼), use the Wilson score method (Equation 1.1) to calculate the interval (𝑝!, 𝑝").   

§ For the ends of the interval, 𝑝!, and 𝑝", and the percentile point estimate 𝑝, convert 
the percentile estimates into sample unit values using the Hazen percentile method.  

Let: 
• 𝑛  = the number of samples  
• 𝑝  = the desired percentile point estimate 
• 𝑧!/# = the critical z-value from the standard normal distribution   

                    (i.e., for a 95% confidence interval,  𝑧$.$#& = 1.96).  
• (1 − 𝛼) = the confidence level for a two-sided interval. 

 
Given the above definitions, the Wilson score confidence interval for the percentile can be written 
as: 
 

• (𝑝', 𝑝() = 𝑝) ∓ 𝑧!/#𝑠′,    (1.1) 
 
where 
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and 

• 		𝐷! = 	1 +	
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#

#
.     (1.4) 

 
Equation 1.1 allows us to estimate the confidence interval for the desired true population percentile. 
We can interpret this interval as follows: for a desired true population percentile, 𝑝, we can be 100 ∗
(1 − 𝛼)% confident that the true population percentile is between the sample percentiles (𝑝!, 𝑝"). 
There is one further step required to turn this interval estimate into a confidence interval for the 
input data (i.e. to change the confidence interval for the percentile into the confidence interval for 
the data in the same units as the raw data). Given the lower confidence interval estimate for the 
percentile, 𝑝!, a lower confidence limit for the input data is found by taking the 𝑝!th Hazen 
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percentile of the input data. Given the upper confidence interval estimate for the percentile, 𝑝", an 
upper confidence limit for the input data is found by taking the 𝑝"th Hazen percentile of the input 
data.     
 
While there are multiple methods for calculation of percentiles, we choose here to use the Hazen 
percentile method as this is popular for water quality percentile assessment (MfE 2003). Calculation 
details for the Hazen percentile method are found in Hyndman and Fan (1996) and involve the 
generation of a piecewise linear function between known order statistics (i.e., percentiles 
approximated from the raw data). The desired percentile is then obtained by linear interpolation 
using this function. In the R package “quantile” the Hazen percentile can be calculated by setting the 
“type” parameter to 5. 
 
Example R-code:  
Example R code for calculation of the Wilson score interval for a desired percentile with a desired 
confidence, and also for calculation of percentiles using the Hazen method, are provided in Appendix 
C. 
 
 
Example 1: We take a sample of a standard normal distributed random variable with 𝑛 = 50. If we 
calculate the median with 90% confidence (𝛼 = 0.1) we find: 

 

The above R-script output tells us the 90% confidence interval for the median (percentile = 0.5) is 
(0.387, 0.613). This result means that we are 90% confident that the true (population) median of the 
data is between the 38.7th and 61.3rd percentiles of the sample data. Therefore, to calculate the 
confidence interval for the median, we must take the 38.7th and 61.3rd Hazen percentiles of the 
sample data: 

 

The R-script output tells us that the 90% confidence limit for the true median of our normally 
distributed data is (-0.07976, 0.33654) which includes the expected mean value of 0. 

The point estimate for the median is found by calculating the 50th Hazen percentile: 

 

This is within the confidence limits defined. 
 

Example 2: We take a sample of a uniformly distributed random variable with 𝑛 = 50. If we calculate 
the 95th percentile with 90% confidence (𝛼 = 0.1) we find: 

 

This gives a confidence interval which contains the expected value (0.95). 
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Appendix B Tolerance interval calculations 
A tolerance interval is an uncertainty interval, which differs from a confidence interval in that a 
confidence interval gives a range around a certain statistical measure (i.e., a range of plausible values 
for the mean, median, other percentile), while a tolerance interval gives a range in which a specified 
proportion of the sample population exists. In other words, a confidence interval provides a ranged 
estimate around a statistical parameter, while a tolerance interval gives a range of values that exceed 
a given numeric value or attribute state (e.g., 90% of all possible values of the data). Like a 
confidence interval, a tolerance interval has an associated confidence level, 𝛼, which is a user 
defined choice. 

Horizons has been investigating the potential use of Wilson-Hazen tolerance limits and consider they 
may be preferable to confidence intervals (and Null hypothesis significance testing or NHST). The 
following text is reproduced from Fullard et al. (2022). 

Wilson-Hazen Tolerance Limits 
A tolerance limit is an estimate which, with some associated confidence, tells us that a certain 
percentage of the data is below a value (an Upper Tolerance Limit (UTL)) or above a certain value (a 
Lower Tolerance Limit (LTL)). The generation of tolerance limits is achieved through the generation of 
a confidence interval for a specified percentage, with an associated confidence level. 

For example, if we wanted to calculate a 90% upper tolerance limit (𝑝 = 0.9) with confidence level 
95% (𝛼 = 0.05) we can simply calculate a 95% confidence interval for the 90th percentile using 
methods similar to those in Appendix B and take the upper confidence limit value (𝑝") as our UTL. In 
this way, 90% of values in our dataset are expected to be less than the UTL, 𝑝", with 95% confidence. 

The only difference between the generation of an UTL or LTL is that a one-sided confidence interval is 
generated. The two-sided confidence intervals presented in Section 3.1 were necessary to bound the 
percentile value, but here we are interested in everything below the upper bound of the upper 
confidence interval estimate, hence only a one-sided limit is necessary. Using a one-sided interval has 
the advantage of giving greater statistical power for the same sample size compared to the two-sided 
limit, since all of the tail of the distribution is above the desired percentile, and not split in half at the 
upper and lower tails.  

For our purposes, we define an (upper or lower) Wilson-Hazen Tolerance Limit as being a one-sided 
tolerance limit generated using the methodology of Appendix B. Given this definition, we can extend 
this theory to generate a probability of our current attribute state being better than a designated 
target attribute state (referred to as a threshold state by Horizons). Depending on whether the 
percentile point estimate (i.e., current attribute state) is below or above the threshold value (i.e., 
TAS), we calculate a series of either LTL, or UTL, with various levels of confidence. For example, 
Figure B-1 provides an example of where the percentile point estimate is greater than the threshold 
value (left) and one where the point estimate is less than the threshold value (right). 
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Figure B-1: Example of a percentile point estimate which is above a threshold value (left) where only the 
lower tolerance limit (a 95th percentile) intersects the threshold value, or a percentile point estimate which is 
below the threshold value (right) where the upper tolerance limit intersects the threshold value. 

For the first example (left) where the percentile point estimate is greater than the threshold value 
we calculate a series of Lower Threshold Limits (LTL) with increasing confidence level. For example, 
the LTL in red may have a confidence level of 75% (𝛼 = 0.25), the LTL in blue may have a 90% 
confidence level (𝛼 = 0.1), and the one in green may have a 95% confidence level (𝛼 = 0.05). Since 
the threshold is crossed between the 90 and 95% confidence levels we can interpolate the values of 
the LTL values to find an estimate of the confidence level at the threshold value. In this example, we 
may find a LTL with a 92% confidence level exactly meets the threshold value. Therefore, we say that 
there is a 92% chance that our percentile is above the threshold value (an 8% chance that we are 
below the threshold (i.e., TAS) value). The concept is identical in the second example (right) where 
the percentile point estimate is less than the threshold value, but in this case we would calculate a 
series of Upper Tolerance Limits.  

To summarise, the process of generating the probability of a percentile being above or below a 
threshold value is as follows: 

1. Given a desired percentile estimate, 𝑝  (where 0	 ≤ 𝑝	 ≤ 1 ), use the Hazen method to 
calculate the percentile point estimate.   

2. a) If the percentile point estimate is greater than the threshold value, generate a series 
of Lower Threshold Limit values using the one-sided Wilson-Hazen method at 
increasing confidence level. 
b) If the percentile point estimate is less than the threshold value, generate a series of 
Upper Threshold Limit values using the one-sided Wilson-Hazen method at increasing 
confidence level. 

3. Interpolate the threshold limit values on the confidence level values to find the 
confidence level exactly at the threshold value. 

4. Interpret this confidence value to find the probability that the percentile value is above 
or below the threshold value. 

Example 1: We take a sample of a uniformly distributed random variable with 𝑛 = 50 between the 
values of 0 and 1. If we calculate the probability that the median is less than a TAT threshold value of 
0.45: 

 

At p=0.37, there is a greater probability of the median being greater than the 0.45 threshold, but still 
a relatively large chance that we are below the threshold. If we increase the number of samples from 
𝑛 = 50	𝑡𝑜	𝑛 = 500, we find that the probability of being below the threshold is greatly reduced: 
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Obviously this is dependent on our random sample, but the result is consistent with expectation. 

Example 2: We take a sample of a uniformly distributed random variable with 𝑛 = 50 between the 
values of 0 and 1. If calculate the probability that the 95th percentile is less than 0.95 we find: 

 
 
If we increase the number of samples from 𝑛 = 50	𝑡𝑜	𝑛 = 500: 

 

Again, the results depend on the distribution of our random uniform sample, but the results are 
consistent with expectation. 

One limitation of this method is that the probability values will be more sensitive (and therefore, less 
reliable) when the percentile point estimate (numeric current attribute state) is close to the 
threshold value (numeric TAS), but more reliable when these two values are more different. 
However, this is likely to be the case with any statistical method to compare numeric current 
attribute state and TAS. 

For example, compare Example 2 above, where the percentile and threshold value were very close 
and therefore we obtained an uncertain result (probability close to 0.5), to the following example. 
We take a sample of a uniformly distributed random variable with 𝑛 = 50 between the values of 0 
and 1. If calculate the probability that the 95th percentile is less than 0.5 we find: 

 

This result is very repeatable for any uniform random sample, and gives good confidence that the 
95th percentile of the data is not less than the threshold value of 0.5. 

Given the sensitivity described above, it may be worth classifying the probability into bins, such as 
those presented as in Snelder et al. (2021) and reproduced as Table B-1 below. 

Table B-1: Probability that a calculated percentile is below a pre-defined threshold divided into bins of 
confidence. The number of categories could be reduced (e.g., in line with the five presented in Table 3-1 and 
MfE (2018)). 

Probability that percentile is less than a threshold value Confidence rating 
>0.99 Virtually certain 

0.95 – 0.99 Extremely likely 
0.9 – 0.95 Very likely 
0.67 – 0.9 Likely 

0.33 – 0.67 As likely as not 
0.1 - 0.33 Unlikely 
0.05 – 0.1 Very unlikely 

0.01 – 0.05 Extremely unlikely 
< 0.01 Exceptionally unlikely 
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Appendix C R code for confidence and tolerance interval calculations 
The following code was provided by Horizons Regional Council. 

 

############################################################################### 
# 
#  Example code to: 
#      a) calculate confidence interval for a percentile. 
#      b) compare the state of an attribute to a threshold value 
# 
############################################################################### 
 
rm(list = ls())                      # clear the memory 
##################################################### 
alpha_level = (1-0.9)   #1-alpha, for alpha Confidence Interval 
percentile = 0.95        # Desired percentile (between 0 and 1) 
 
############################################################################### 
############################################################################### 
############################################################################### 
#Wilson CI function for percentiles 
binom.CI <- function(events, #events = outcomes 
                     trials, #number of individuals, test, etc 
                     alpha = 0.05){ 
  n <- trials 
  x <- events 
  p.hat <- x/n 
  # Calculate upper and lower limit 
  upper.lim <- (p.hat +  
                  (qnorm(1-(alpha/2))^2/(2*n)) +  
                  qnorm(1-(alpha/2)) * sqrt(((p.hat*(1-p.hat))/n) +  
                                              (qnorm(1-(alpha/2))^2/(4*n^2))))/(1 + (qnorm(1-(alpha/2))^2/(n))) 
  lower.lim <- (p.hat +  
                  (qnorm(alpha/2)^2/(2*n)) +  
                  qnorm(alpha/2) * sqrt(((p.hat*(1-p.hat))/n) +  
                                          (qnorm(alpha/2)^2/(4*n^2))))/(1 + (qnorm(alpha/2)^2/(n))) 
  # Modification for probabilities close to boundaries 
  if ((n <= 50 & x %in% c(1, 2)) | (n >= 51 & n <= 100 & x %in% c(1:3))) { 
    lower.lim <- 0.5 * qchisq(alpha, 2 * x)/n 
  } 
  if ((n <= 50 & x %in% c(n - 1, n - 2)) | (n >= 51 & n <= 100 & x %in% c(n - (1:3)))) { 
    upper.lim <- 1 - 0.5 * qchisq(alpha, 2 * (n - x))/n 
  } 
  out <- c(lower.lim,upper.lim) 
  return(out) 
} 
############################################################################### 
############################################################################### 
############################################################################### 
#function to calculate Hazen percentile 
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hazen_percentile <- function(x, #data values 
                                                     percentile){ 
  hz_pc = round(quantile(x, probs = percentile, type = 5),5) 
  return(hz_pc) 
} 
############################################################################### 
############################################################################### 
############################################################################### 
percentile_ranges <- function(x,  
                                                       percentile){ 
  confidence_levels_to_check = c(0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.975, 0.99) 
  confidence_level = c() 
  one_sided_confidence_level = c() 
  lower_percentile = c() 
  upper_percentile = c() 
  lower_value = c() 
  upper_value = c() 
   
  #append case with no confidence interval 
  confidence_level = append(confidence_level,0.5) 
  one_sided_confidence_level = append(one_sided_confidence_level,0.5) 
  lower_percentile = append(lower_percentile,percentile) 
  upper_percentile = append(upper_percentile,percentile) 
  lower_value = append(lower_value,unname(hazen_percentile(x,percentile))) 
  upper_value = append(upper_value,unname(hazen_percentile(x,percentile))) 
   
  #iterate through confidence levels 
  for (conf_level_i in confidence_levels_to_check){ 
    confidence_level = append(confidence_level, conf_level_i) 
    one_sided_confidence_level = append(one_sided_confidence_level, (1-
conf_level_i)/2+conf_level_i) 
    cis = (binom.CI(percentile*length(x), length(x), 1-conf_level_i)) 
    lower_percentile = append(lower_percentile,cis[1]) 
    upper_percentile = append(upper_percentile,cis[2]) 
    lower_value = append(lower_value,unname(hazen_percentile(x,cis[1]))) 
    upper_value = append(upper_value,unname(hazen_percentile(x,cis[2]))) 
    } 
  df <- data.frame(confidence_level, one_sided_confidence_level, lower_percentile, 
upper_percentile, lower_value, upper_value) 
  return(df) 
} 
############################################################################### 
############################################################################### 
############################################################################### 
find_threshold_percentage <- function(x, threshold, percentile){ 
  #Returns the probability that the percentile is less than the threshold value 
  df = percentile_ranges(x,percentile) 
  haz_pc= unname(hazen_percentile(x,percentile)) 
 
  if (haz_pc == threshold){ 
    cat('Probability that percentile < threshold:  0.5') 
    return(0.5) 
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  }else if (haz_pc > threshold) { 
    if (threshold<min(df$lower_value)){ 
      cat('Probability that percentile < threshold:  <', 1 - max(df$one_sided_confidence_level)) 
      return(max(df$one_sided_confidence_level)) 
    } 
    confidence_column = df$lower_value 
    pred <- approx(y=df$one_sided_confidence_level, x=confidence_column , xout=threshold, rule=2) 
    cat('Probability that percentile < threshold: ', 1 - pred$y) 
  } else { 
    if (threshold>max(df$upper_value)){ 
      cat('Probability that percentile < threshold: >', max(df$one_sided_confidence_level)) 
      return(max(df$one_sided_confidence_level)) 
    } 
    confidence_column = df$upper_value 
    pred <- approx(y=df$one_sided_confidence_level, x=confidence_column , xout=threshold, rule=2) 
    cat('Probability that percentile < threshold: ', pred$y) 
  } 
  return(pred$y) 
} 
############################################################################### 
############################################################################### 
############################################################################### 
 
 
#  a) calculate confidence interval for a percentile. 
 
############################################################################### 
#Generate data 
set.seed(1234) 
mydata = rnorm(50)  #normal distribution 
#mydata = rlnorm(50) #log-normal distribution 
mydata = runif(50,0,1) #Uniform distribution between 0 and 1 
############################################################################### 
 
 
ci = (binom.CI(percentile*length(mydata), length(mydata), alpha_level)) 
cat('The confidence limit for the ',percentile ,'th percentile = (', ci[1],', ', ci[2],') \n') 
 
 
cat('The confidence limits of the data: (') 
cat(hazen_percentile(mydata,ci[1]),', ',hazen_percentile(mydata,ci[2]),')') 
 
cat('\n Hazen point estimate for the percentile: ', hazen_percentile(mydata,percentile), '\n') 
 
 
#  b) compare the state of an attribute to a threshold value. 
threshold_value = 0.9 
cat('Threshold value = ', threshold_value, '\n') 
 
df = percentile_ranges(mydata,percentile) 
 
prediction = find_threshold_percentage(mydata, threshold_value, percentile) 
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